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In this paper we will find all connected graphs which are switching
equivalent to their complementary line graphs. The notion of switching
equivalency is taken here in Seidel’s sense, see [1], while for some facilities,
we also introduce some conventions from [2].

A partition of the vertex set of a graph G into two (disjoint) subsets
(one of which may be empty) will be represented as a colouring ¢ of vertices
by two colours (say black and white) such that the vertices from the same
subset are coloured by the same colour. The graph G together with its
colouring ¢ will be denoted by G, Switching a graph G with respect to a
colouring ¢ (or partition ¢) means deleting all edges between black and white
vertices in G, and introducing a new edge between a black and a white vertex
whenever they were nonadjacent in G, The graph obtained after switching
will be denoted by % (G,). Graphs G and H are switching equivalent if H=,% (G,)
for some colouring ¢. Switching relation ~ is an equivalence relation in the
set of graphs and this enables us to speak about switching classes of graphs.

Following [2] we can also say that we are here, in fact, solving the
“‘generalized” graph equation G~L (G) or, what is the same, L(G)~G. The
“ordinary” graph equations were considered in many other papers from the
literature and with them the isomorphism relation =~ or rather = was taken
as equality, while the solutions were graphs (determined up to isomorphism).
Since all graph operations considered in this paper are defined in the set of
graphs but not in the set of switching classes, we must consider the unknow G
in our equation rather as a graph than as a switching class, which explains
the generalized concept. ‘

In [3] the ordinary graph equation L(G)=G was solved. It has only two
solutions, namely C; and C,oK,*. These two solutions are also solutions of
our generalized equation and they can be regarded as ordinary ones. All other

solutions are exceptional, and with them % (G.))=L(G) for some colouring ¢

* o denotes the corona of graphs.
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while L (G) #+G. Hence, when we find a graph G which is a solution we shall
prefer to indicate a colouring ¢ (which need not be unique) so that % (G,)=

=L (G) holds.

Throughout this paper we shall follow the terminology from [4]. Some
unusual notations will be ngen here.

Suppose G is a graph while V is its vertex set. If UCV, then G(U)
denotes an induced subgraph of G generated by U. Since we are dealing also
with graphs whose vertices are coloured (black and white) we shall denote
by V5 (V) the subsets of ali black (white) coloured vertices of a graph whose
vertex set is V. The fact that H is just an induced subgraph of G will be
written HCG, while otherwise we put H<G. If ¢ is some colouring of H
then it is proper if any two adjacent vertices are coloured by different colours.

- Assume now that v, ,v,,...,v, are vertices of some cycle C, such
that v; adj v;,;(i=1, 2,..., p) and summation is taken mod p. We define a
graph C(a, a,,..., a,) as follows: we take a cycle C, as above and to
each v; we add g; pendant edges.

In solving our equation we shall use the so .called growing method.
We observe one detail of a graph being searched (possiblly its induced subgraph)
and step by step we add to it new vertices (together with edges) in order to
construct it. This process of growing is, of course, under some control. If
starting from one step some vertex does not have any more nelghbours we
shall. call it saturated.

: The basic tool for our further purposes should be the following lemma
which is a straightfoward consequence of Beineke’s theorem for line graphs.

Lemma 1% If o (G,) is a complement of a line graph, then G, does
not contain as “colour” induced subgraph any of the following graphs of Fig 1.

o—e o0 o0
(3) (4) (5)

AN
(6) (n (10)

Flg. 1-

The following lemmas are also césy for proving and we only
quote them.

* Of course, the colours in the above giaphs may be mutually interchanged.
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Lemma 2. If .%(G)=L(G), then any of the graphs of Fig. 2 when
appearing as colour induced subgraph in G, imply C, <G} )

O—0 *———e o—e
O —9 O
o ° m
) Fig. 2

Lemma 3. If G is connected and G~L (G), then G is unicyclic.

Lemma 4. If K, ¢ G and % (G)=L(G), then C, appears in G .as an
induced subgraph equally as 2K, in G, provided that both copies of K, are
coloured in the same way. - :

) Lemma 5. If K,£G and . (G,)=L(G), then G, does not contain as
colour induced subgraph any of the following graphs of Fig. 3.

—

Fig. 3
Lemma 6. If . (G)=L(G), then A(G)= max {p(H)} where H, is an
induced subgraph of G, which is coloured properly and ‘isomorphic to either nk,
or K,, ..

Note when G is connected then H can be only mK,, K, , and C,.

Now, on the basis of Lemma 2 we can begin our growing process.
Namely, we can start even from a cycle and grow it toward solution. The
great facility in connected case is the fact that each added vertex can be
adjacent only to one vertex already existing in the previous step.

_ Theorem 1. If G is connected and g(G)=3, then G~L(G) implies G
is equal to C(m, n, 1) (m, n=>0).

Proof. The vertices of the unique triangle T(=uvw) may be regarded
in G, as follows: ,

(i) all three are white;

(ii) two are white while one is black. v

Case (i): Concerning only white vertices, (1)* directly implics GVy)=
=C(a, b, ¢). From (3) we get a+b+c<<3 while due to (2) all white vertices
out of T are saturated.

* In further text we shall refer to Lemma 1 only by forbidden coloured graphs of Fig. 1.
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Now, suppose there exists a black vertex at distance k>1 from the
nearest vertex of T (see Fig. 4). Clearly, v, v, ..., v, are all black, while
due to (2) £<3.

Fig. 4

Assume first k=3. If all black vertices (except v,) are adjacent to v,

then v, would be isolated in ,% (G,). Hence there must exist in G, a black
verteX, say x, nonadjacent to v, but adjacent to some vertex from a graph of
Fig. 4. Due to (2) x could be adjacent only to v; and by Lemma 2 it is saturated.
Further, v, is also saturated due to (4). Even v;, due to Lemma 2 becomes
saturated if just one vertex analogue to x is added. Since K,C % (G,) (observe T
and an edge v,v,) we have 5K,<G, thus implying a=b=c=1. Therefore
only two graphs appear as possible solutions and we eliminate them by
direct checking.

Now let k=2. In this case since .5 (G,) has to be connected there must
exist in G, a black vertex, say again x, nonadjacent to v, but adjacent to some
vertex from a graph of Fig. 4. Due to (2) x could be adjacent only to v and
by Lemma 2 it is saturated. If y is black and adjacent to v, then due to (3)
and (5) there are no more black vertices. The resulting few graphs cannot be
solutions due to Lemma 6, for example. So except x (and v,) all other black
vertices are neighbours of v,. If v, has s>3 black neighbours, there are no

solutions because of A(L(G))=s+3>s+22A(F (G, )) otherwise when s<C2 the
same follows by direct checking.

Hence let G = C(a b,c). If we delete vertices u,v,w from % (G),
then we get a graph K, ,(s, 2>0). After complementation the latter graph
becomes K (UK, This means that in G there exist 3 mutually nonadjacent
edges which can be removed so that the line graph of the last graph is equal
to K,\UK,. This is possible only if a=b=c=1. ie. G=C(1, 1, 1). Of course,
the last graph is a solution (see Fig. 6a) but here it can be viewed only as
ordinary solution.

Case (ii): By using (6) and Lemma 2 it follows directly G=C (a, b, c).
Now, if we delete the vertices u, v, w from ., (G,) then we again get a
graph K, , (s, 1>0) while its complement is KUK, This means that in G
there exists a subgraph (not necessarily induced) isomorphic to P, whose lines
can be deleted from G so that the line graph of resulting graph is equal
to KUK, The latter is possible only if at least one integer out of a, b, ¢
takes the value 0 or 1.

Assume first, say ¢, is equal to 0. Then there exists in L(G) a vertex
adjacent to all others. Hence there must exist in G, a vertex, say x, adjacent
to all vertices of opposite colour but nonadjacent to any vertex of its colour.
If x is on T it must coincide with a black vertex of T, say # But then all
white vetices of G, are adjacent to u while due to (9) there is at most one
white vertex outside 7. If just one white vertex outside 7' exists then we
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immediately get a solution indicated in Fig. 6 a (note n=0). Hence all vertices
outside T are black and of course adjacent to either v or w. If @ or b is
equal to zero, then 8 (L (G))=2 while 3 (,% (G,)) =1, implying ab+0. From ( 10)
it follows a=b=1 and this is a solution already registered but coloured
differently (see Fig. 6.a) If x is not on T it can be adjacent only to u while
all vertices out of T including x must be white. Due to (9) we now easily
get a solution indiceted in Fig 6.a (note m=0). ‘

Hence we can now take c= 1. In this case without any analysis concerning
colouring we have a solution indicated in Fig. 6. a.

This proves the theorem.

Theorem 2. If G is connected and g(G)=4, then G~L (G) impies G is
equal to C(m, 1, n, 1) (m, n=0).

Proof. The vertices of the unique quadrangie Q(=tuvw) may be
regarded in G, as follows:

(i) all four are white;
(ii) three are white and one is black;
(iii) two are white and two are black.

Case (i): Concerning (again) first only white vertices (2) and (7) directly
imply G(V)=C(a, b, ¢, d). From Lemma 5 it follows, say a=c=0 and 0<5,
d<1 while due to (2) all white vertices outside Q are saturated.

Now, suppose there exists a black vertex at distance k>1 from the
nearest vertex of Q (see Fig. 5). Clearly, v, v,,...v, are all black, while
due to (2) k<3.

Fig. 5

If k=3 (see the corresponding part of Theorem 1), there must exist
in G, a black vertex x adjacent just to v. But then, due to Lemma 5, v,
is saturated and also v,, as follows from (4). From (7) it follows that we can
add only one black vertex more but only to x. Now we have only a few
graphs as possible. solutions and they are eliminated by direct checking.

If k=2 (see the corresponding part of Theorem 1), there must exist
in G, a black vertex x adjacent just to v. Due to Lemma 5, v has not any
more black neighbours. If v, besides v, has more black neighbours, then due
to (7), x is saturated. But now due to Lemma 4, u and w each must have
just one white neighbour outside Q. The resulting graph cannot be a solution
since, for example, L(G) has just one cut-point (observe an edge vv,) while
v and x are cut-points for ,%(G,). If v, is the only black neighour of v,
then, due to Lemma 4 we can add only one black vertex more solely to x.
Now, we have only a few graphs as possible solutions and they are eliminated
by direct checking. :
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Hence let G=C(a, b,c, d). Due to (2) and Lemma 4, say b=d=1.
The resulting graph is a solution (see Fig 6.b) but, as can be shown. only
for some other colourings. - ;

~ Case (ii): Let, say u, be black. Due to (2), (7) and (8) if some edge xy

is disjunct from Q then both x and y must be black and, say x is adjacent
to u. Note first, that due to (2), x does not have white neighbours. Hence
if all black vertices of G, are adjacent to x, then it will be isolated
in 7 (G,). Thus due to (2) there must exist some black vertex z which is
adjacent to u. Now, having in view Lemma 5 there could exist only one
black vertex more but adjacent just to z. By the same lemma, w (opposite
of u) does not have white neighbours out of Q while v or ¢ each could have
at most one suclr neighbour. The remaining graphs are not solutions due to
Lemma 6, for example. - i

Hence let G=C(a, b, ¢, d). By applying Lemma 4 it immediately follows,
say b=d=1. The resulting graph is a solution (see Fig. 6.b) but, as can be
shown, only for some other colourings. .

Case (iii): Now by (2) and (8) we immediately get G=C (a, b, ¢, d) while
from Lemma 4, say b=d=1. Now, not dealing with colourings we have a
solution from Fig. 6.b.

This proves the theorem.

Theorem 3. If G is connected and g(G)=5, then G~L(G), implies
G=C(0,0, 0,0, 0). , . ;

Proof If g(G)=6, then 2K, is an induced subgraph of the unique
cycle of G which -after colouring . contradicts. either (2) or Lemma 3. "Thus

g(G)=>5, i.e. pentagon P appears in G as an induced subgraph. If G#C,,
then 2K,CG and due to (2) and Lemma 2 one copy of K, is white while

the other is black also providing 4 K,<G since K,C .7 (G,), i.e. 4K, CL(G). If
there exists in G a vertex, say.x, at distance 1 from the nearest verteh of P
baving degree greater then one, then x and as well its neighbours must be,
say black, while the remaining four vertices of P are white and also saturated.

Since x could not be isolated in . (G,) there must exist in G, a black vertex
nonadjacent to x. Due to (2) it may be adjacent onmly to the unique black
vertex of P. If deg x>2 we get a contradition due to (4) or if deg x=2 all
vertices of the corresponding graph are saturated and it is not a solution as
can be seen by direct checking.

Thus let G=C(a, b, ¢, d, €). Now if 4 K,<G it follows that, say a, b, c#0
regardless to d and e. But now we easily get a contradiction due to (2) or
Lemma 4. )

This proves the theorem.

Now we can state our main result.

Theorem 4. If G is connected and G~f@, then G is one of the
following graphs: ‘

@ C(m, n, 1) (m, n>0);

(b) C(m: 1,\]’1, 1) (ms n>Q);

(c) €(0,0,0,0,0). '
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.(see also Fig. 6).

(b} {c)
Fig, 6

The disconnected case will be treated in our future paper.
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