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ON FREE COMMUTATIVE GROUPOIDS
| Marica D. Presi¢
1. It is well known the following equivalence lemma [5]:
¢y . AB=CD & (A=CAB=D)
VEX)(A=CXA\D=XB)
 V@EX)(C=4AXA\B=XD)
where A4, B, C, D, X are words in a given alphabet.
The proof can be splitted into three cases:
() d(A)=d(0), (i) d(4)>d(C), (iii) d(4)<d(C)

where d(X) denotes length of the word X. We recall that the equivalence (€))
has many applications. For example the proof [2] that each term can be ex-
pressed by its subterms in the unique way is based on the equivalence (1). So
are different asertions about equations on the word semigroups [3], [4] and the

proof that the operation F defined by
FX, X, .o, X)=fX X, ... X, (f is a constant symbol)
does not satisfy any algebraic law what implies that any Q-algebra can be

embedded into a word algebra [1].

As any free semigroup is isomorphic to the corresponding word semig-
roup, it is easy to conclude that in any free semigroup (S, *) the wollowing
equivalence :

) A*B=CsD < A=CAB=D
V@EX)(A=CsX \D=X+B)
V(@ X)(C=A+X A\ B=X+D)

is satisfied, where 4, B, C, D, X belong to S.

The equivalence (2) can also be proved directly using some well known
consequences of the associative law.

Note that the operation  satisfying the equivalence (2) must be asso-
ciative what we are going to prove in the following lemma.

Lemma 1. If the operation * satisfies the equivalence (2), then it is
an associative . operation. , :
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Proof. Suppose # satisfies the equivalence (2) and consider the asso-
ciative law \ o
(A+B)xC = A=(BxC)

where A4, B, C are terms in . We deduce the following equivalence chain:
(4%B)#C = Ax(BxC) '
& AxB=A NC=BxC
V(3 X) (4xB=A*X \ BxC=X+C)
V@A X) (4=(4+B)xX N\ C= Xx(B+C))
= AxB=ANC=BsC
VT (For X we can choose B)Y
VEX) (A=(4=B)xX N\ C=Xx(B+(C))
< T (By the tautology (pV T) & T)-

Thus from the assumption (2) it follows that-the associative law for x is
equivalent to truth what yields that this law is satisfied. We mention that the
groupoid (S, #) satisfying (2) need not to be a: free semigroup what shows
the following example. Let (S, #) be the free semigroup generated- by {a, b}
and let a new constant ¢ be defined by: ' ' .

Def(c) = c=axb
The,‘_s&irmigroupﬁ obtained in such a way satisfies (2) because so does each free
semigroup, and it is not free because it satisfies the equality Def (¢). L
. Our main task is to prove for theé commutative operation the equivalence
similar to (2). In the second part of the paper we. give several . applications
to the word problem; solwing the equations, finding. the so called lawless
terms etc.

Pl T R AR ‘ A

2. Lét * be a binary operation symbol and Kishe commutativ law for
#) be o - : ' ' b

® Xy =yEx

Further, let X, Y be terms built up from #, some variables and some constant
symbol. First of all we give the following definitions.

D1l Xx=Y means that X, Y are equal as words

(D2) X—xY means that Y is obtained from X by one use of the commuta-
tive law? ' ) o

(D 3) X=4Y means that Y is obtaing from X by the finite uses of K. In
other words: : . :

X=xY & X=YVX>xY
‘ VG") @3uv, . e U, (X%KU1AU1“'fKU2/\ Tt ,/\Un—_’KY)
where U,, ..., U, are terms in .

1) The symbols T, L denote the words true; false respectevily.
2) That is one subterm of X of the form 7T;+T, is replaced with T*T.
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.- The definition (D 3) may be replaced with
(D3) X=,Y iff K-, X=Y

where |, is the sign of logical deduction in so called equational Jogic, that
is in the logic having as axioms all formulae of the form S

R) x=x
and as rules

(S) x=y; (T) x=y> y=Z; (S) x1=y1’ x2=y2
=X Xx=z X %X, =Y %Y,
Using (D 3) or (D3’) it can easily be proved that = x 18 an equivalence rela-

tion compatible with =, i.e. that it is a congruence for . We note that K in
the definitions (D 1), (D2), (D3), (D3’) may be replaced by any set Z of

* algebraic laws in the given operation language O. The relation =, is also ‘an

equivalence relation compatible with each operation in O, i.e. it is a congruence
for 0. Throughout the paper we shall mostly deal with the commutative law
and therefore the subscripts K in relations —, =, will often be omitted
except in the case where ambiguites may arise.

In the next theorem we prove the equivalence which parallels to (2).”

Theorem 1. Let (S, *) be a free commutative groupoid. Then it satis-
fies the following equivalence

3) A*B=CxD & (A=CAB=D)V(4=DAB=C)
where A, B, C, D are any terms.in %.. - . -
Proof” As (S, ) isa free commutative groupoid, it suffices to’ prove:
) | AxB=yCxD & (A=xCAB=yx D)V (Ad=xDAB=xC)
The ptoof of < — part follows i_mmediateiy.ﬂ
= — part: Suppose now
&) .~ A%B=4;CxD
By definition (D:3) this means that CxD is obtaind from A=B by finite uses
‘of the:commutative:law. If the number of uses is zero then- o
(A=xCAB=xD)V(d=xDAB=C)

follows immediately:
“Consider now the . case ;
A*B—>,CxD

By‘ definition of the relation — x the following cases' are possible:
(i) K is applied to A4
(i) K is applied to B /
(iii) K is applied to the whole term A4*B
) Generally, four cases are possible. Namely, when we apply some algebraic law Z

‘to the whole term A+B, then ‘we can use Z from right to left and from left to right, what
coincides in the case o commutative law. : i

14+
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Using definitions D1, D2 the first and second cases can be writen in the form
A—>xCAB=D, A=CNB—>xD o

In the thlrd case applylng the law K to the whole term A*B we obtam the
term CxD. Therefore the following equalities

C=B, D=4
hold. All three casses writen together yield the dls_]unctlon
(A—»KC/\B D)V (A= C/\B—»KD)V(C B/\D A)

Thus ‘we have _]ust proved the equivalence:

© (A*B»KC*D) & (A—xCAB=D)
V(A=CA B—»K D)
V(A=DAB=C)

Further, by definition D3 the folloWiny implications i

’ (X—>x¥) > X=x¥, X=Y > X=4x¥
hold. Using them we immediately deduce ' k
@) (A*B—x C+D) = (A—KC/\B_ D)\/(A-KD/\B—KC)

Consider now the case when CxD is obtained from 4#B- by two, three or
more (but f1n1te number) of uses of the law K, and suppose that?

® @u, .. U)(BUI, o, Uy )[A*B—+KU1*U1 Aee AUMU, —»xC*D]
implies
) (A= CAB=xD)V(A=xDAB=¢D)

This is the induction hypothesis. Further, let 4#B, C+D be a pair of terms
such that C*D is obtdined from A*B by n+1 uses of the law K, i.e. there

 are terms U;, s U,,+1, Uy, e U,,+1 such that
(10) AxB— UisUlA - - - AU;*U;’—>K Upi1#Unit AUnp1#Uny—>xC*D
Using the induction hypothesis from (10) we conclude
(=g Unii AB= g Ui V(A= Unri AB=¢ Uni DI A(Uni1# Uy 1—5C#D)
Therefrom by using (7) we obtain immediately
[(A=KU;1+1AB:KU;:,H)V(A:KU:H/\B=KU;:+1)]
A(Uns1=C AU 1=D)V (Uns1 =D AUn1=C)]

; 1) As the law K is balanced, the term U obtained from AsB by one use of K mus
be of the simmilar form, i.e. there are terms U 1 U'l' such that U 1_U «U{ 1
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By the tautology (pVA(rVs) & (PANV(PAS)V @A)V (g/As) the prece-
dmg formula 1s equivalent to
| (A= Unii AB= Ui AUni1=x CAUys1=x D)
V(A= Un+1/\B=KU:+1’"/\ Unsi=xDAUyp1=5C)
\/(A=KU:+1/\B:KU:1+1/\U;:+1=KC/\U;/+1=KD\;
V(Azxv;t'%lAB;KU;ﬂ/\ Unii=xDAUps1=5C)

Finaly, using the transitivity of = and the compatibility .of implication with
conjunction from (11) we deduce (9) what completes the inductive proof

The following Jemma parallels to Lemma 1 for associative’ operatlons

a 1)&

Lemma 2. Let * be a binary operation satisfying the equivalence (3), ie.
AsB=C*D & (A=CAB=D)y(A=DA\B=C)
where A, B, C, D are any terms in %. Then * z.s a commutative operatzon
Proof Namely, the implication ‘
(12) {(A=CAB=D)\V(A=DAB=C) = AxB=CsD
which immediately follows frow (3), may be replaced by two implications -
A=CAB=D = AxB=CxD, A=DAB=C = AxB=C+D
From the second of them taklng D=4, C=B we deduce

: A=ANB=B = AxB=B=A
therefrom it follows
AxB=DB%A

Thus * is a commutative operation.

Similar to the associative case the groumd (S, *) satlsfymg (12) need not
to be a free commutative groupoid. This can be shown in a similar way by
making the free commutative grorpoid- generated by {a, b} and introducing a
new constant symbol ¢ by definition Def(c). .

3. In the following we give some applications of rthe equivalence (3)
(i) The word"problehm.r We investigate whether for example the folloving words

(ap)ex)+(y+(xnp)), ((oxp)2x)x(x2 (), ((F2)2)*(xx(xey))
are equivalent modulo commutative law, i.e. whether they are in the relation
=g Using, the equivalence (3) several times we obtain for the first two
words the following equivalence chain:

(o)) (p(x2y))= ((x2p) £ x) (X %(y*))
& [(apyxx=(xxp)xx Nyr(xsy) = xx(y*y)]
VI(x#p)xx= X*(y*y)/\y*(X*y) - (exy) x|
& [(xxy=x:y Ax=x)V(X+y =X \X=X*})) -
A(y=xAx2y=ys»)V(y=ysy Axxy=x))]
VI[(x#y=xN\x= y*y)\/(X*y y*y NX=X))"
A(p=x*y Axxy=x)V (p=xAxxy=x2))]
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Considet now each of the comnjuctions:
X*y=X*Y \NX=X, X*Y=X\X=X*), y=xAx*yfy*y, J’=J’*y/\x*y=xb
X2y =X\ X=Pxy, x*y=y*y/\x=x,’,y‘=x*y/\xav=y=’x, Y=XAXxy=Xxxy
As it holds: ; . :
T(xxy=x*%y)=T, T(x=x)= T — by reflexivity of =,
cr(y=x)=_1; t(x=x2y)= 1L, r(y=x)= L, t(xxy=ysy)= L
'r(y y*y) L, t(x=y=»)=1, (= -x*y)= L — as K is balanced

usmg these equahtles we 1mmed1ate]y conclude that the preceding conjunctions
have ‘the following truth values:

BRI T’ _.Ls —L,,_L’ _l.:, J~"—L’ -L
Therefore the truth value of the last formula in the obtained equvalence chain is

(TALACLYDIVICL VALY D) de L
and the equality
U (e R(p(xan) = (D) x) x (% (1)
does not hold. : ' .
For the first and third word we have the following equivalence chain:
((exp)# ) :(px(x2p)) = (P2x) 53 (x5 (xey))
& [(xry=xAx=x2y)V (X2y=Xxxy AXx=X)
N =yx Axxy =)V (¥ =y \ X%y = y*X)
(After some. computation) k
S [LATIAILV(T Axxy=y*x)]

(Since the formulae x#y=x; Y=Y*X, X¥y=y
are false, while x*y= Xy, X=x, y y are true)

<;" Xk = y*x

Thus, the first and third words are equivalent. As an immediate consequence
of the preceding consideration and properties of the relation = g -we: obtain
that the second and the third words are not equivalent. ,

It is not difficult to see that the given proofs could be shorter but the
preceding ones have the following adwantage: they can be transformed into
algorithm which is suitable for computer D) This fact follows from the next
theorem. : :

1) The decidability’ of the word-problem for free commutative groupoid can also be
proved in some other ways—for example using the notion of context sensmve grammar, some
general theorems about'balanced laws etc.
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Theorem 2. Let A, B be terms built up from *, variables and “con-
stant symbols. Then there exz.st forumlae F, G, ..., H such that the following
equivalence , -

(13) ' k_A=KB(:)-F\/G\/-k--VH
holds, where F, G, ..., H are conjunctions of some formulae of the form

t=gl, U=gl, U=V, U=glU (u, v are constant symbols or
S variables, t is a term)

The equivalence (13) can be obtained in finite number of steps u.ing the equiva-
lence (3) from left to right and the dzstzbutzvel) laws

(BVDV - VPIAGN GV - Va) &
= (pl/\ql)v(pl/\qZ)v...V(pr/\qs) (r, S=1’ 25-;')
glso from left to right.

‘ Proof We prove the. theorem by induction on o(B) — the number of
the sings '# in B. If this number is 0 the assertion is true because.in that
case A=, B is of the form A= u, where u is a constant symbol or a variable.
Suppose now that o(B)>0 and that for all terms B such that o(By<n the
assertion of theorem is true. Let further B be a term having the property
o(B)=n. If 0(4)=0 the assertion is true and if not, there exist two terms
A’, A" such that A=A'xA”. To find A’, A" we need finite number of steps
because the number of the subwords of the word A is finite.- Similarly, as
o(B)=n, n>0, there exist terms B’, B" (which can be find in finite number
of steps) such that B=B'+B". Thus we have equivalence

(14) ‘ : ' A=K_B @ AJ*AHV___KA/*BH
Using (4) we immediately obtain
(15) AI*AII_KB’ BII @ (A ——KBI/\AII B”)V(A, BII /\AII KBI)

As o(B)<n, o(B”)<n, by induction hypothesis it follows that there exist and
can be found in finite number of steps some formulae

F, Fy..., F; Gy, Gyyooy Gy Hyy Hyyooy Hos Iy I,y 1,
which are conjunction ic')f the formulae having the form k ‘
t=ju, U=pgl, U=gV, U=¢U
such that the following-equivalences
A=¢B & FVF,\---VF;
A"=gB" < GG,V ++ - VG,
A'=¢B'& HIVHZV' -VH,,
A'=¢gB’' & LVLV - --VI

(16)

1) In fact we apply also the assoclatlve laws for disjunction and conjunctlon but its
application is not essential. .



216 ' M. D. Preié
hold. ‘Using‘the equivalences (13) — (16) we deduce
A=xB & (FAG)V(EAGV - - - V(FAG)
VANV HEH ALY -+ -V Hy AL

As the formulae F;, G;, H,, I, are conjunctions of formulae of the forni

(A7) t=jgu, u=gt, u=yv, u=gu (u, v are constant symbols or
o , variables, ¢ is a term)
we conclude that the formulae

FAG,, F,NG,, ..., F NG, H AL, H\AL, ..., H, A,

are of the same form. The proof of the theorem is completed.

Corollary. Let A, B be terms is %. Then the formula A=B is a con-
sequence of the commutative law if and only if at least one of the formulae
F, G, ..., H whose existance is proved in the preceding theorem is a conjunction
of the formulae of the form u=gu.

Namely, it is not possible that any of the formulae of the form wu=t,
t=u, u=v, where u, v are diferent variables and ¢ is a term, were a conse-
quence of K because L is a balanced law. Thus, among the formulae (17) only
u=gu can hold. Therefore at least one of the formulae F, G,..., H is a
consequence of K (this is a sufficient condition for F\VGV .--H to te a
“consequence of K) if and only if it is a conjunction of the form u, = 4u, A'u,
=Ku2/\ e /\un=Kun'

We note that in the considered example we did not proceed in all details
[ the way deseribed in Theorem 2 because we used in the proof the facts
ike this: x=x is a consequence of K, i.e. x=,x is true, x*y=,x is false etc.

The madin reason for this is to obtain the proof not too long.” We illus-
trate now in all details the proceeding described in Theorem 2. This is the
proof for (x#y)xx= g x*(y*x):

(xxy)xx =g x(y*x)
é) [x*y:Kx/\x=Ky*x]v[x*y=Ky*x/\x=Kx]
& [X*xy=gxAXx=gy*x]
V(=g YAy=xX)V(x=g XAy =g¥) AX= g x]
& [xry=gx Nx= y¥x]
V[X=Ky/\y=KxA3f=xx]
VIx=gXAy=gyAx=xXx]

Since the conjunction

X=gXAY=gYAX=gX
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is composed only of the formulac of the form u=— x U, the equality

(xEp)rx = g x#(pEx).
holds.

(ii) Solving of equations. In this part of the paper we solve some equations
on the free commutative groupoid. First of all the linear equation (in X):

sy’ A+X=B

where 4, B are given terms in % and constant symbols (the names of elements
of the  generating set of the choosen free groupoid). Obviously, if B is without
* the equation (18) is impossible. Consider now the case B is of the form
B'xB”. Using (4) we obtain : PR SR

AxX=B'+B" & (A=B' NX=B")\/(4=B"AX=B)
wherefrom' we conclude that the equation -
CAxX=B'xB"
is possible if and only it at least one of the gonditions:
k ' A;=B’*‘A,=B\'<"“ )
is satisfied. Further, we have: ,
@ If A4=B’, then the only NSOll‘lt(i(-)n is B
(ii) If 4=B", then the only solution is B’
We solve: now the equation (in X,, X;, oo Xy, m23)

(19) X)X e X = XXy e (X, 4 X))
For examp]é, if n=3' the equatidn (19) readé: ‘
_ (XI*XZ)%X3 \=.A4’1—*(X2*X35

Using the equivalencé' (3)‘its ‘solvi'n'g is as follows:
(XI*XZ)*X3;_§X1*‘(X2*X3\) o
& (XxX, =X, AN X, = X, xX,)V (X, *
& XX, =X, s X, \NX,=X,.

(Since both equalities X,+X,~ X,, X,= X,+X, are impossible)
& (X=X, AX, =X) V(X = X5\ X, =X))] AN¥=X -
= [(Xl=X2/\X2=X3)\/X1=X3]/\X1:X3

(Since X,=X, is true)“ B
= X=X L

(By the tautology ((#Vq)Aq) <q)
Thus we ‘have ‘pfoved" the ‘equivalencé \
(20) X)X = X (X Xy) X, =X,

X,=Xx X, A\ X,= X))
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We prove now that, generally, the following equivalence (for n>=3).
(21) (X *X)*X5)- - ca X, =X Xk o (X2 X)) )
& X=X NX,=X,_ A+ ANX,,=X

| B
holds, where [x]-is the whole number not exceeding x. The proof of (21) is
for example:

TG A5 ATS STREES A 1S AU GG SURNNG AIRTo S A R
& [(X*X)rXy): -+ 2 X, =X A X, =X+ (X3% - - - (X2 X)) - )]
V(X #X)*X5) - - » *X,,_17=X2*(X3* ce (X, 2 X)) - ) AX,=X]
& (X xX)=Xy)- - - X,  =X,x(Xy% . o (X, X))+ INX, =X, :
(Since both equalities in the first bracket are false)
We have proved the equivalence:
(- (X X)eX) e + - #X, X=X 2 (X% (X, yx X))+ - 0)
o (e X)) - Xy m Xty - -y X)) IAX,= - X,
Let now the following equivalence -
(o (X X)X - - # X X, = X o (Xyx - - Koy X))
@) & (X)X -+ Xy =X Ko -+ Koyt X))
AXi=X AN X=X, 1A -+ X=X iy
be the induction hypothesxs Applying (3) to the equahty ;
(CAD AL ATERED LD VL0 IFFLE G A5 AT

‘'we obtain o v
(X,#X,)+X;). - - 2 X, =X i%(Xj,% 0 - (X2 X))
& (X xX)=*X;)- - Xpi= i1 A X 1_X,+2*(Xx+3 (X X)) - )

V(X x X)) Xp) -+ - X "'X;+2*( +3* (X2 X)) VAKX = Xy

Since the equality S
(x; *Xz)*Xs) Xooio1=Xigy

is impossible in the case i <[—’21—], the preceding equivalence becomes

(X *Xp)*X5)- - - . OED L0 OFPL TR (X ® X))
(X s X)+X,)- - n—;—l—XHz*(XH-s*‘ (Xl e X)) ONX = D P
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Substituing the right hand side of this equivalence into (22) we obtain:
(X X)*Xy) -« o 2 X,_)e X, =X, #(X,% - - - (X, 2 X))
S (X X)sXye - - X, =X, (X, % - AX,_ % X) - - )

NG =X N =X, A N =X A Ky = X,

where i< -’22— . This completes the inductive proof of (22) in the case
1<i<[%:|. If i =[~Z—], the equivalence (22) becomes.

(' ° '((XI*XZ)*XS)' ° *Xn—l)*XnT—‘Xl*(Xz*' ¢ '(Xn—-l*Xn)' : ')
e (X xX)*X). - X *(X a1 *e o (X_ X)) - )
”*[Z‘J +1 —:,-1—2 .

2
/\X1=Xn/\X2=Xn—1/\"'/\Xn =X n
B
A=A

where A is the mirror image of A4 is a consequence of K (what is a well
known fact), the precending equivalence turns into (21). Namely if n=2k
then we have the fallowing equivalence chain :

(SRR (CASHES OLERED SENLD SFES AT0 AT 6 IS o P

<:> ((X1*X2)*X3).' Cow X=X (X (X2 Xpp0) - - 0)
ANX =X N =X A - - NX =X

& (X *xX,)%X;)- X *ka= Xk*(Xk_l* < ex (X, X))
/\X1=~sz/\Xz=.sz—1>/\ 'v/\szth%-l

< X1=X2k/\X2:‘X2k—l/\ s /\;szX};+1/

While (- - - (X # X)) £ X)X+ - )5 Xy = XX (- - - (X,5X,)- - -)
is a consequence of K)

=X[

r
2

As the equality of the form

Thus, in the case n=2k the f_ol]ow‘kin“g équivalence
(23) (X *xX,)*X;) - - - X=X 2 (X% o o - (X% X5) -+ )

L= XlzszA-Xzink.-lA Vet /\Xk:Xk+1
holds. .

In the case n=2k+1 we have th‘e following equivalence chain
((XI*XZ)*X3) : *XZI‘”:Xl'f(Xﬁvf»' ;’(XZk*ng*%;)' cy
- ,,((XI*XZ)*X3). RS CIED (LT 10 SIUE TN 0. (P dU DIV I
-/\X1=sz+1/\X2=sz/\ s ANXe= X,
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& (XG#X)X5)- +  # Xy =X+ (Xpx - - - (XxX) - - )
ANX =X NXgm Xy N - AXge=Xii
& X=Xy i ANXo=Xp N e o - NXe= KXo L f
(FOI‘ (- '((Xl*Xz)*Xs)' : ‘~)*Xk+1:\Xk+1*(Xk* t ’(sz*Xl)',"v\')'
is a consequence of K) ~ oo
Thus in the case n=2k+1 we have proved the equivalence
7) B0 45 ATS ATERED FIES Ae SEERIC S5 S I
& X1:X2k+1‘/\X2=X2k/\'"/\szXk+2 ’
Written together (23) and (24) form the equivalence (21). )
Using (21), i.€. (23) and (24) we immediately conclude that the solutions
of the equation (19) are determined by S
X, =1, X,=11,, ..., X =T, Xy =, Xy =Ty o Xapm =10, Xop =11,
if n=2k ie. by ; ' ' A ’
X, =1, X,=11,, ..., Xk=Hk, Xk+1=Hk+1’ Xkaz:Hk’ Xk+3=Hk—1’
s Xy=TL, Xy =10y, if n=2k+1, B

where II;, IT,, ..., I, I, are any elements of the considered free com=
mutative groupoid ‘ ; o :

(iii) Lawless operations. By lawless operation we mean the operation
holding no algebraic law except the law x=x. If a binary operation = satis-
fres some algebraic laws Z it is possible that there exists an operation o
(defined by #) which is lawless. If this is the case and the laws Z are belanced
then any Q-algebra can be embedded in some groupoid of the variety Z. For
example, any Q-algebra can be embeded into a semigroup, since the operation

o defined by
def

xoy=(asx)*y (a is a constant symbol)

is lawless, while = satisfies asociative law. L o .

Let now Z be a class of algebraic laws" having as consequences no
laws of ‘the form: - ’ o ‘ v

u=v (u, v are different variables or constant symbols)

t=u (u is a variable or constant, ¢ is a term having at least one ope-

ration sign) : o S »
Further, let o be a binary operation defined by
def

(25) s o xoy=E(x, )
where £(x, y) is a term.in O built up from variables x, y-and. eventualy some
new constant symbols. We now prove the following theorem which gives
necessery and suficient .conditions for & to be a’lawless operation:

1) The laws Z are in the given operation.language -O.
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; Theorem 3. Let Z ‘be just descibed class of * algebraic laws:in. the
language O and o the operation defined by (25).  This operatzon is lawless, if
and only if the fallowing equivalence”)

26) AoB=,CoD & A= ZC/\B~ZD
holds, where A, B, C, D are terms in °.

Proof. If o is a lawless operation, then the equivalence

AoB=,CoD & A= _CAB=_D

must be true, where X=_Y means that the terms X, Y equals, as terms in o,
From this the equ1valence (26) follows 1mmed1ately

Suppose now that (26) holds and prove that o is a lawlless operatlon,
i.e. that

@27 P=,0
implies P=_Q, where P, Q are terms in o.

The proof is by induction in 0(Q) — the number of o in Q. If o(Q) 0
and as the laws Z do not imply any equality of the from t=u with o(£)>0,
we conclude that the equility o(P)=0 holds. Thus, in the case o(Q)=0, the
equality: (27) is of the form u=,v, where u, v are variables or constant symbols.
Because of the assumption that any equality of that form where u, v are d1f-
ferent symbols does not hold, it follows that u= ,v implies u=v.

: Let now 0(Q)>0 and suppose that for all terms Q with o(Q)<n and
for aIl P . :
P=,0 = P=,0

holds. Further, let P, Q be terms in o with o(Q)=n (n>0) and suppose
P=,0. If 0(P)=0 then similarly as in the case 0(Q)=0 we conclude P=_Q.
Consider now the case o(P)>0. As 0(Q)>0, the terms P, Q are of the form
P'oP”, Q'oQ"”, where P', P"”, Q', Q"' are terms in o. Thus, the assumed

equality reads . .
P'OP” = Ql onl

From this using (26) we deduce

28) P'=20Q', P"=70"

As the terms Q', Q" sethfy the conditions o(Q")<n, o(Q")<n, using the
induction hypothesis we obtain

=0, P'=,0"
‘wherefrom it follows immeelately
| P'oP"=_,0'0Q", ie. P=,0
whlch completes the induction proof Thus the operation o is lawless. We apply

now the previous theorem to the commutative law. This law being balanced
belongs to the laws for which the theorem holds. Thus, to prove that some

1) The relation =z is defined similarly as- =g, for example by defmmon A=z B.iff
ZppA=B. ;
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operation o defined by *, where -* is the operation of the free commutative
groupoid, is lawless it suff1ces to prove the equivalence (26). For example, each
of the operations o defined by

(29) xoy=(x*x)*(x*y)
(30) ' xoyd;fx*(x*y) .
(3D xop= ((rey)#x) %y

is lawless? Namely, if 4, B, C D are terms in o, where o is defined by
(29), then we have:

AoB=CoD
& (A*A)x(A%B)=(C*C)*(C+D)
& AsA=CxCAA+B=CxD
(Using the equlvalence (3)
& [(A=CAA=C)V(4=CNA=C)|Al(4= -CN\B= -D)V(4=DA\B= D)]
& A=CAB=D

(By tautology pV(pAq) & p)

Thus, AoB=xCoD & A=xCA\B=gD wherefrom we couclude that the ope-
ration o defined by (29) is lawless.
‘ In the similar way it can be proved that the operatlons o defmed by
(30) and (31) are lawless.

In what follows we prove that the operation ¢ deflned by

(32) x3y=x%(y*y)
is lawless. The proof is based on the fallowing assertion:

If A is a term in 6, where o is defined by (32) then A cannot be ex-
pressed in the form BB where B is q term in o. .

which can easily be proved using the fact that each term in o has even nurhber
of symbols #. Namely, if this term has one symbol o, then it is of the form
u=(v+v), where u, v are variables or constant symbols and it has two # ’s. Further,
if X and Y are terms in o and if they have even number of #’s, so has the
term X#(Y*Y), ie. Xo¥Y.

. Therefrom, we conclude: If 4, B are terms in o then A4, BB have even
and odd numer of #’s respectively and so the equality 4=B%B cannot holdz)

1) We recall that the operation o defined by (29) is that which was used in Kuratov-
ski’s definition of ordered pair by sets: (x, ») = {{x, x}, {x, y}}.
?) Since applications of K cannot change the number of #’s.
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Let, furter, 4, B, C, D be terms in o, where o is defined by (32). Then
we have:

AoB=CcD
& Ax(B+B)=Cx(D+D)
& (A=CAB*B=D+D)\/(A=D*DA\B+B=C)
& A=CABxB=DxD .

(Since both equalities A =DxD, BxB=C are false)
& A=CAB=D
Thus the operation o defined by (32) is lawless.

_ Problem. Describe the classes of all semigroups and all commutative

groupoids satisfying the equivalences (2) and (3) respectively.

For groupoids of the last of these classes all preceding considerations
remain true.
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