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ON SOME NEW TREATEMENT OF ARTIFICIAL
SATELLITE’S. MOTION

Boj. Popovié

Absract

A few modification have been carried .out with respect to the earlier solutions
© (Popovi¢ 1968, 1972) of the problem. A new anomaly, ,,regulating anomaly*, was in-
troduced. It enables to find for » the expression of the same form as for the unper-
turbed motion, while the ,,regulating anomaly* has only a small additional term. The
expression for s=sing is in a closed form where: from one easily gets the necessary
approximations. Zero-, first and second approximations for r, s, and § are elaborated
in detail. Solution for A is the same as in the earlier papers since r, s, and { are ind-
pendgnt of A which can be calculated from sufficiently good approximations of r, s,
and &. ‘
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Introduction
As. in the two earlier papers (Popovi¢ 1968, 1972), the unknowns are
r,.§=sin{<p, |
(r, A, ¢ are the spherical coordinates of satellite) while the equation

is taken as solved for the successive approximation process:

(0) CECO+SC1=C0—€f%%dS
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¢. the following integrals are known

(dr) h+2£—~ar‘2 U, (r, 5),

dt
¢))
=—(3sz—1)+sU U,=2 ijrl“"Pk(s)
k=3
2 kr—=C
@ 7

and, with the approximation of one degree hlgher than for r and s, § is known
in the form (0).

The equations to be solved are

Ga) ar_ C
da rr( (I=5%)
which could be solved later (after » and s are found)
ds\? '
3b : r2—} =% (1 -s?)-C?
(3b) (25) =ra-
2
(rﬂ) =r2h+2pr—-{—clU=
dt
(Bo)-

t
‘ oU,
Er2h+2p,r—co—s(2:1+Ul)§1+Ul=f_a_'d,,
’ r

to

The solution for r

One should handle first the equation (3c) since its main part depends only
on r. On the basis of previous experience take

r=ry(p+Asing —Bcos&)
4
@ dr=ry[p'+(4' +B)sin€{— (B — A)cos §] d§

(' = derivative with respeét to &), with p, 4 and B which satisfy

5) | hr2+2pr—Co——h(jrg)

that means (3c) to become

) rd% = \/ —h—e(+ Ul)/(dig)zdt
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This integral will not diverge when dr/d% =0 since dr/df=0 in that case and,
due to (3c), {,+ U, =0 when: (5) holds for all E.

Conditions for (5) are obtained by equating the coefficients for 2sin¥
cos &, cos?k, 2sin&, 2cos¥ and the free terms in (5). By denoting

) | / 02= —p/lroW)=ay/r, -
“:Iherc —pla,= h (for unperturbed motion) follows from (1), the conditions are
—(4'+B)(B'—A)=A4B
(B'—A)*—(A"+B)?=A>-B>
® ‘ (A +B)=024—-p4
' (B'—A4)=02B—oB
P+ A +BE=C/(r¥ ) +2020 — (o> + 4?).
All these conditions could be satisfied although they are by 2 larger in number
than the unkonwns (p, 4, B). From the first two conditions one obtaines four
solutions
® B —A=+A, A +B=7FB
(10) ' B —~A=+BY =1, A'+B=+4)—2.

The third and fourth conditions have the same value

V=Te'=02—p
using the solutions (10). The last condition (8) is then
(0° 6+ 47 =T, 0% r - (p— 027 — 0542
pro 02 =7y, resp. u?= —h{,.

Since .C=(7; x;;)z, the last condition can’t be fulfilled already for the unpertur-
bed motion, where —h=p/a,.

Thus, only the solutions (9) are possible. The upper signs are not pos-
sible here since in the case of unperturbed motion (4'=0, B'=0) these equa-
tions give 4=0, B=0 — which is impossible in the general case. -Similary,
p'#0 is obtainable from the third and fourth conditions only if

which is also impossible in the general case. Therefore, one must have

a1y , p'=0, p=0>= —y/(r, h).
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Then (8) becomes
B —G0Y(r)+ e 2+ Ao )2
@

A4 B =Gy = o) = (h Gy + 12 (1),

This condition could be fulfilled for unperturbed motion. Hence it shows that
in the perturbed motion the sum of squares of A4 and B must be a def1n1t1ve‘~’
constant

12) A2+BZ=H2=E'__ﬂC_(l.

h2r2

The solutions for 4 and B from (9) should satisfy this condmon, and
one sees immediately that '

(92) BB 4+ A44'=0
i. e. A24+B%= const.

Remark: Taking ¢ +U, instead of &, in (5) could give H which is’
variable. However the fulflllment of the condition (9a) shows that H must be
the constant and consequently it is impossible to include &, + U, in (5).

By putting
13) ‘ A=Hsiny, B=Hcosy
the two equations (9) give pointly
(14) ’ dy=0, y=%,

The solutions (13) with the (constant value (14) taken together with (11)
and (12) fulfill all the reguired conditions (8). Thus, (4) becomes '

15 r=ao+r0H(smysmi—cosycos£)=ao~r0Hcos(£+Y)
and, by using (14),
, dr
16 —=r,Hsin(G+
(16) BTl &+

The calculation of the variable £

The new variable £ could be found now from the equation (6) which
now takes the form

(62) [@,+r, H (sinysinE —cosycos )] d=VI+e MY —hat
17 | M= +U):S, S=hr?H%sin?(E+Y).
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One has, step by step, from (6a)

[(ﬁ—Hcos.y)+HsinysinE+Hcosy(l —cosE)JdE=

Fo -

1 .
=l/1+eM-e— ﬁdt

Fy V1

d[(&—Hcosy)E_,+Hsihy(l—cos£)+Hcosy(E,—sin€)]=
¥

1]
‘ S 1 o
| _(V1+eM_1+1)BTU,/Zdt
The expression (15) gives for the initial moment (£ =0)

(18) ro(1+Hcosy)=a,, resp; (—(—13~Hcos Y>= 1.
Fo

If, in order to avoid the possibility of imaginary £, one takes

(19) E=y0, J—\/—p'—=n, oc=6’-Hsiny, B=02Hcosy
a4 VI

then one obtains

d(y+ocy2c2+{3y3c3)=(l+s

__....hM__)ndt
1+)1+eM

¢,, ¢; beeing two of always real functions:

20y comeost o= T, em IR SRR

The integration gives

£

y+ocy2c2+By3c3=n(t—-t0)+snf—ﬂ_df—_—_—
1+V1+eM
@1 = n(t—t)+eJ
l+aye,+8y%e;s
; Mdt
22 J=|n——F——F—.
¢ f 1+V14+eM

Finally (15) becomes

(15a) r=ro(1+ayc +By%ec,).

199
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The other variables

By making the transformations
23) s=m-sinn, m*=1-C%{
as in the earlier papers (Popovi¢ 1968, 1972), and by using (6), (7) and then
(14), (17), (15), the equation (3b) becomes

ds dE
r-—-r—=J} gmcos
dt dt Vz K

r(mcosndn+sinv1a’m)l/—h(1+sM)=l/chos1;dE

dE c2dy
dn= \/h(l+sM) a,—ryHcos(E+7) 2{2(1——C2/C)

If one uses {={¢,+<c¢, and the transformation

24 5+Y \/_1:_‘.—’ _
( ) 1+et » € rOH/aO

(where e has the role of excentr1c1ty in the unperturbed motion) it has the form

1+sM al/1-e 2C(E-C? os

\/ T, [1_ (M-C/C) (1 +eM) dw+
(1 —é) 1+ V1= (M=F,/%): (1 +e M)
s——————CZtg S as
{Eg-Ccy) r
From (24) for e, (11) for H and h= —p/a,, one gets
a2(1—ed)=a2—(p2+h8). iP= ~{/h

L e < el
at h(1=¢) h(=L,h)

Without any restriction, it follows that

@25 M=y =w—wo) +eJ;

f M C/CO dW+
(L+e M) +V (A +e MY,
(26)

+3C2fSm n(d n+tgn. flﬂ)
rg m

Yo
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The procedure from an earlier paper (Popovié 1972) is completely appli-
cable here to find A. It gives — the formula (45) in the original paper —

t ¢

* 1 T
A=A, +arctg T —3sCf sinzndv;—-3af sin? v dm —
o f rCVz : mi
ty ; fo
27 '
:
\ v ,
E[ T 00,
2 ) m* os
o
C
(28) T=—=tg.
44

It seems that the somewhat simpler expression is obtained if in the exp§
ression for A, having in mind that s=sin¢, one introduced the transformation

Ctgcp&l/C~C2 sin 0

what gives
. Ctgo Cmtgy
=C, +arcs1n( __)+ : di{=
’ ye-cr) g-c?
=Cz+arcsin( ¢_. S_) C mign dt.
: Vi=C? Y1=52) 2 ¢-cC?

But the detailed transformation shows this is solution identical to (27).
To summarize thé solution of the problem is given by the formulae

(0) for § and ¢, (1) for U, and U,, (15) and (15a) for r,
with ‘
E=y0 o __H ezﬁ

r, roh a,

(20) for the functions ¢, (21) for y, with J from (22)

after wards (25) and (26) for s=m.siny

and at the end
(27) and (28) for A

The first and second approximation for {

The zero-approximation is selfevident everywhere, although some expres-
sions without £ give more than the zero-approximation. To obtain any further
approximation one ought to find the corresponding parts with the previous
approximation in the above expressions. In this process some difficulties with
integration occur but at Jeast all terms with ¢ could be integrated. The neces-
sary transformations are performed in the sequel.
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Firstly ) : v :
B m? m(,2+C2(—1———1—> m02+sC2—§’——=
Co g €3

e gfe-e ()

By utilizing (24) and a,%(1 - e2) = Co/h (1 5) becomes
__% (1= ez) ’ %
1+ecosw‘ w(l+ecosw)

(29)

(15b)
With (1) and (25) the expression (0) gives
dCl=———d( 52) ~ «) 2a’s— -E—s1n27] mrdn— .
r

—isin2 ( )dC—-s Uzds
r g ds

The first item, with (29) and (15b) takes the form

&, sin2y dV);—-

-—3m02—§“—(1+ecosw)sin27)dni-—3 £ C?

0

@ 3 pe. }
—my? - d(cos 2 ) ——my? —[sin (2 +w)+
2 % 2 ° %,

. g, sin2y
+sin(2n—-w)dw+eJ)~-3eC?L——dn=

Cocr
=—;—moz%d(cos2n)+—;—m02p'—€[dcos(2n+w)+3dcos(zn_.w)_

0 0

_esin@n+w)dJ,—3esin(2n—w)dJ]-3¢C? Clg”éz”d
o 067

and thus the whole expression is now

dCl=m02-—2—“'—a'[3cosZ’Y)+ecos(2'/)+w)+3ecos(2*q—w)]-—
N _
,he . . 2 Gisin2y
~emy?—(2sin2ncosw-—cos2ysinw)dJ;-3eC dn+
co Gobr
in2
St 00U,

30) +3eC?
(30) =7 os
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“The terms in [ ] contain all that belongs to the first approximation for .
To obtain the second approximation one ought to take — termswith their
Zero- approx1mat10n The details are worked out in the sequel The integral of _
the main part, by using (25), is '

. .
n;(,_cy« [3cos2(w+n,)+ecos Bw+2m)+3ecos(w+2 1)1
0
and the remainder can be written in the form
—moza% [3cos @w+2m)J,, e+ 3sin 2w+
0 . ’ Co

+2m) T c+ecos(Bw+2n) T, e +esin Gw+2y,) Sy e+

+3ecos(W+2m,) Jy, 2+ 3 esin(w+27,) Iy el

where
sin(2¢eJ, 1—cos(2elJ,
&) g, 2WGe) o, 1mcos@edy)
€ €
Therefore
Cl=mo2%[3cos(2w+2nl)f3cos2no+ecos(3w+2nl)—
L R
(32) —ecos (W +2m,)+ 3 ecos (W+2%,) — 3 ecos (2n, —w,)] +¢&,
¢, ~ —m(,ZE‘%{J11 [3 sin 2w+ 271, +esin 3w+ 2 )]+
S :
+eJy, [3cos@w+2n)+ecos(Bw+27)+3ecos w+21)]n
g,sin27
+2ef(251n2ncosw cos 2 ysinw) d J; 3C2f d
tocr
33) cace [S00 00, fﬂds.
G2r 0s 0s

Wwo

The first term of &, gives precisely the first approximation for {=¢,+¢{,.
For the second approximation it is sufficient to take J,,=2J,(¢=0), to remove
completely the term with J;,, and to take

N=w—W+ny dn=dw

in the remainder.
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The approximations for y

J from (22) is needed with necessary approximation to obtain the ,,regu--
lating anomaly*‘ y from (21). In the same way, without any restrictions, .by
using (6) one has

dT=n M die _n_—M’l 2-V1+eM—~1—-eM d
1+V1+eM YV —-h 2 ViteM(1+V1+e M)
wherefrom -
_ 2(3
(34) 2y h gy rat—e M B—cM)rdd

2VT+eM+(l+eM)QR—c M)’

The first term is the most important, By using (17) for M, (15b) for r
and the transformation (24) it follows

; w
—&,(L+ecosw)|1+tg2— —
Sollte )( s 2) VI=& aw

e’y sin?w

Gy  Lae- _
S 2 52 T o2 cin2.”
4a,p’e (1+ecosw)1/1—e sin®-5-
To find ¢;+U, one has :
U1=(3m02sin2n—1)—g—(1+ecosw)+s(3 ng%—sinzvﬁUz)-——
r

0 0

2_ } 2
=§ﬁ;2t___%y-(l+eCOSW)—3—%—‘}1(1+ecosw)[cos(2w+2«,h)(1_ezju)_
0 o
in2
(36) —sin (2W+2")1)5-711]+s(3 c? Clcsné n+U2)
r
V]

E—ZQ(C1+U1)=(3 my? —2) (1 +ecosw)—3 emy?cosw-cos 2w+27,)—
v ,

my? [3 cos 2, +ecos(Wy+27,)+ 3 ecos (2 v;(; —wy)] +emy? [cos Bw+2m,)+

+3ecos(w+21;1)]+s-2—C°(CZ—U2+3 Cz%sinﬁq)+s[Jusin(2w+21]1)+
® 06T
(36a) +eJ,cosQw+2n)]-3m2(1+ecosw)

MrdZ=§d£-(C1+Ul) from (35) and (36a).

The main part of this expression is easily integrated as

) Lo —C? {(1_2CC2 )cosw+e

_ZeCanVrOCOp. o —C? esinw

—2sin(w+2n1)] —[icoszn0+4coswocos2v;0+
e

+cos2my-

sinw Wo

+ 2 sinw, sin 2 'qo] ctgw
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and thus, with the e-part of (34),

2
J={(1—2 C )(cos?w+e_cosTv0+e)+coszm(.l 1 )
L —C?/\ esinw  esinw, sinw sinw,

—2sin(w+27)+2sin(2 v;o~—w0)—[(—3—+4coswo) cos 2 7y +
e

(37 + 2 sinw, sin 2 7)0] (ctgw—ctg Wo)] +eJ*

e 3G-C)VT=e n (2% [
! 2ery? 21F~—h{3p.m02 f(CZ+U2+

Wo

2 Y ) ‘
+3C—c§2‘—p'sin2n) .d:) +f[J1, sin(2w+2v,)+eJ,cos 2w+
sin-w
0 . Wo
38) +21)] aw  n f M2(3-ecM)rdk .
Tsinzw 2V =hJ 2)14eM+(1+eM)(2—c M)

Wo

The approximations for S

Jy from (26) has still to be elaborated. Denote the terms as (J,), and (J,),
respectively. The first one could be rearranged as :

1 /8 +U0 ¢
(39) AN 5 ( S to)( w—¢dl,;)
(40)  dJ,- B-eM)M+(1+M)E /K, ”

VieeM (V1 +eM+VC)(1—e M+ V(¥ M)YT,)

Only the first part ought to be ‘elaborated, since the zero-approximation
suffices in the second one when % is supplied from (25) with the second ap-
proximation.

By wutilizing (32) for ¢, and (36) for U,, as well

sin® w

41 S= ~L;e2 ——-——
“h % (1 + e cos w)?
from(17) and (24) — one has

L+U, &

2 ’2 V
- _ (1+ec.c>_sﬂ+i {ﬂ",—&[cos(2w+27q1)(3+4ecosw)+
S %, Goersin?w G| 2,

+2esinwsin(2w+27)—(3 +4vecosw0)cos2~q0—2esinwosin2n0]+eC2}—
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2‘2 (1 +ecosw) [3 mg? 2-—3mozcbs(2w+ '
0

+2n1)(1—szjlz)+3m0281n(2w+2n1)eJu+
. +s(3 ccly'smsz—U)}

0

_(L+ecos w)? {
[ e2 sinZ w

Finally, after the integration, one has

w4
2 1+e2+2ec .
V), = o & f te + ¢ osW[cosZ«ql-e(cosw—}—25m2wcosw)-}-
422 - sin?w » \
R

+2esin 2y, sinw (1 42sin2v&—coszw)+(3—Zrﬁo—z)(l+ecosw)—

—(3+4ecosw0)00527;o——2esinw0sin27;0] aw= . -

4?; f(1+ecosw)[3 2 my=2 =3 cos 2w +2n)] dw+e (), *
0 . X

e ‘
VD= el é" [Ze(l+e2+e20052w)s1n(w+2v;,)+?e2sm(2w+2m)-
_e(l—!-ecosw)z

- (cos2m,+3)—3e2w(B-2my," %)+
sinw ‘

2 . .
+2m‘2 1+3e2)ctgw+e 3+e +e3sinw |+ 2 e[cos (2 0y —Wwo)+
sinw °

coswtete(l+ecosw)? .
L+ )} Lo
Wo

+ COS Wy €08 2 7] - —

sinw

(42) .

o1 l1+e*+2ecosw (1+ecosw)2

(Jl)l = e A . 4 CZ .

2 Loe?sinZw 2 g, e sin?w
Wo . wo

x3mo @

Y: (1+ecosw) [Ju sin(Qw+2n,)—eJ,cos Qw+2n)+
0

2
(43) +3 —C—C—‘—L—sm2n+U]dw+——— f[(l e COSW) (C1+U1)+,Cl]d~7
. 8,2 esinw
In a similar’ way, byv using (25), (23) and (0), one has
2
¢ é——U—l do)
rm2{2 os

dJ), =3 s‘t“ r’“ (dw ted],—ctg



On some new treatement of artificial satellite’s motion 207
where the main part, by utilizing (15b) and (25), can be written in the form

—;—Cz pco—{d,}& w+3esinw—%sin2‘n—”esin(2'7).+w)-3 esin(Zn—w)];l-

+—;—C2 u8, 3 [3 cosZV)+2ecoé(2n+w)+6ecos(2n-—w)]dJl.

If one takes the transformations
$in 27 =sin (2w+27)1)~sm(2w+27)1) e;sz-i~cos(2w+27)1)sJ11
sin (27m+w)=sin(3 w+27;1)—sm(3 w+2v;1) J,+cos@Bw+2n)ed,
sin (20 —w)=sin(w+2n,)—sin (w+27,) €2Jy,+cos (w2 7,) ety
the integration gives

. 3 . .
(J1)2=%C2 yLCO-3[3w+3esmw—?sm(2w+27)1)—es1n(3w+27)1)-

(44) —3esin(w+2 m)]” +eW@,t

Wo
V),* =—C2 18, "3[~%Ju cos (2 w+2m)+—lezsm(2w+2 )~
—eJjcos(Bw+2m)+eed,sin(3w+27,)—
—3eJ,cos(W+2%)+3 eJnsin(w+2m)]+

+—§—C2 pgy~3 f]3cos27)+2ecos(2n+w)+6ecos(2n—w)|dJ,+

wo

2
45) +3¢2 f ¢ Md.s].

2m2{? os
Finally, by combining everythiﬂg,
Ji=(W,+ (), from (42) and (44).

Evaluating w and A

Many of those expressions depend on the wariable w and it has to be
expressed as a function of the anomaly y by connecting (15a) and (15b) for r,
nemely

S

ro(l+oaye,+py2e)=—-290
o 1TBYie) @ (l+ecosw)
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i. e , »
(46) ecosw= % -1.
rop(1+aye +Byiec,

Finally, the variable A can be evaluated from (27) and (28) as soon as
the other variables are obtained with the corresponding approximation.
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