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ON THE CONNECTION OF RECURRENCE OF METRIC, EIGEN
TENSORS AND TRANSITION OF LENGTH IN W -0, SPACES

Djerdji F. Nadj and Arthur Mocér

Introduction

The base of the theory of regular general connection was laid in [1]
from T. Otsuki. That theory was jointed by ‘one from us with theory of Weyl
spaces in [2]. The spaces get on that way is called Weyl-Otsuki (W 0,) spaces
and it was proved in [3] that-the length of vector ¥ resp. V; is proportional
to the Otsuki’s differential if either the metric tensor g, or vector V7 resp. V;
is an eigen vector. This holds in the case if in place of the vector V! a
symmetric tensor T9, or a skew-symmetric tensor :S¥ stands too. By this

considerations was supposed that the fundamental tensor
P;=Plg,

of the W0, space is symmetric, what in followings we will suppose always.

In followings we change some of the above conditions and results, and
we ask that from which two of conditions of them give one of the others:

(1) ngtj Ykglj’
(2) PirPis &rs =T 8ij» T‘—‘T(x)a xi=xi(t)’
() P () B} (%) 8, (x) =7 (%) g5 (),
3) PIVi=xVr, t=1(x), x'=x'(1),
DV 1 —_— DV’
4 = —~V V:=Vg ViV,
) TR sV

In [3] it was proved that from (1), (3) or (1), (2) it follows (4).
Our fundamental results are the following:
If we suppose that (3) and (4) holds, then (1) follows in the case

Pi==3/

where T is an eigen value of vector V7, i.e. in a general W,\.

1) General W, means a W, in which the differential D of tensors of type (p, q) is
multiplied with Tp+4q, )
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We prove also that from (2) and (4) it follows

Dg,; (d~ dxk
5 =2 4o, — "
®) (G e dt)g,

If g, is an eigen tensor field, i.e. if it holds (2) then from (2') and (4) it
follows (1).

On a more or less general way one can transport this theory for vectors V
in the set of symmetric resp. skew-symmetric tensors T¥ resp. S%. The most
important results are expressed in theorems 3—6. ’

In this paper we shall denote the differential operator D/dt frequently
by D, resp. the differential operator d/dt by d.

§ 1. Preliminaries. The basic formulae

It is known that Otsuki’s regular general connection I' consists of two
different parts. These are the covariant part 'T" and the contravariant part "I
The covariant differential is given for example for a tensor of type (1.1) by,

a.n DV}: =V, Vjdxk=P PP DV,

where

(1.2) \ Vji =P} P;’ VZ/k; V:/k L=0, V, 3+ T Vs — “"Thx V;“
and

(1.3) DV§ = Vi dx*

(see [2] § 1.). A very usefull relation is ;
(1.4) D8 = (1% —" T%) dx*.
For a scalar T it holds

s DIr=DT-dT.

For the complete theory we relate to the fundamental work of T. Otsuki [1].

§ 2. The case of vectors
Le be V¥ a vector, the length ¥ of which we define by
@.1) Vi —g,Vivi.

According to (1.5) using (2.1), the symmetry of tensor g (1.2), (1.3) and
(1.4) we get

DV2_dv? Dg, ... D3 . oy
(2.2) 7=7~7;“V1V—2gij dt VV+2gU P Vi,

131, (3-4).
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Now" we suppose that ¥ is an eigen vector, i.e. it holds (3) and
it according to

PiQs=15;
it follows that =¥/ =p'QJ From (1.1) it follows that for a vector V*
(2.3) DVi=Ql Dy,
Applying the above two relations on (2.2) according to
24) | 2y 0h=2,,0!
following from the symmetry of P, we get

2 ] b i
@5 P Dsaiayaps_gg oy 0%, DV

Vig-i,
dt dt dt dt
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from

where we applied the relation analogous to (2.3) on Bg,.j and D 3}. If we have

a parallel displacement of an eigen vector V/(DVi=0), then it holds

———D 8;nV’=’r£rV’”

dt dt
(see [1], (5.8)). Applying it on (2.5) we get

DVZ_(Dgab

d~
2.6 bv= 28, 5\ - 1paps,
(2:6) a \ar & dt)

Now we suppose that (4) holds i.e.
Dy? DV dx’*

2.7 —=2V—=0, (x) — V2.
( ) dt at cPh()dt

Substituting (2.1) and (2.7) in (2.6) according to (1.1) we get

dx* dv dxk
2.8 Vi8a) T P — —284— 11—, g — L VeVP = 0.
(7 ) [( % 8ab) r 8ab at Pr Eab dt]
If here V* are arbitrary, from (3) it follows that

P}Vi==3iVi,
or k
Pj==8.

In this case from (2.7) we have

dx¥ d= dx*
V8w ——=28up— 7+, gup— T2
k8ab ar gbdt P 8ap d
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If ¥/ is .an arbitrary. eigen tensor field, i.e. P; (%) Vf(x) = 1 (x)Vi(x) then
k
according to ‘L-a,;i’f- and from the arbitrarity of ak we have
dt dt dt

, Vg =Yk8am Yi: =0, T2 + @ T2
Thus it follows '

Theorem 1. If V' is an arbitrary eigen vector field with eigen value ~ (x),
and if DV/dt is proportional to V along all curves C:x'=x'(t) and all eigen

vectors V', then the metric tensor g; is recurrent iff Pi=3.
It is known that if P}—TSJ holds, then W— O, reduces on a general W,
(see introduction).

The Theorem 1 expresses that from the assumptions (3) and (4) follows
the relation (1) of paragraph 1.

Now we suppose that the metric tensor & and its differential Dg ;i are
eigen tensors with the same eigen value 7, i.e. it holds (2) and

(2.9) - P{P} Dg,=7Dgy.

In the case of parallel displacement of vector V7, from (2.2) (2.1) and (2.7)
which_is' equivalent to (4), applying the relations analogous to (2.3) on Dg;
and D3J; it follows that

Dg, - dxk .
( dngaQJ"‘ng(]Qz) Q >V'VJ:‘<Pk~d—t—gijV’V".

Now V¥ being arbitrary, so is

D, D3 dict
& an QJ 2gs(j Q P —0

(2.10) > dr a ¢

In [2] it was proved, that if a tensor g, is a symmetric eigen tensor with
eigen value < along a curve C, if tensor P, is symmetric and if our condition
(2.9) is satisfied, then it holds
‘ d~
dt

L D8 D8, _
(211) d gas d - 8ab=8bs

(2], Satz 5, relation (4.4)). Using the relations (2.11) and
(2.12) &b Q?Q?:T“lgi;

following from the fact that Dg;; and g; are eigen tensors, from (2.10) we get

Dgoy g o, dT dx*
—= : ;- T R —— =
it 0: Q; 4T, 7 Px dr 8ij
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After a contraction with P., Pj using - (2) we get

Dg. (d~ dx*
2.13 =L +ro,—g..
( ) dt (dt Pr dt )gv

This relation is not equivalent to (1) of § 1, because (2.13) holds only along
a given curve C: x’—x'(t) In the foI]owmg we suppose that the metric
tensor g; is an eigen tensor not only along a curve C, but it is an

k
eigen tensor field, i.e. it holds (2°) of the introduction and ?=0k-rii’i
1 t

K :

where ddi are arbitrary. We also 'suppose in place of (2.9) the stronger
A .

condition:

(2.14) PIPIV, g=7V, 8,

It is obvious that from (2.14) it follows (2.9), but the inverse holds only in
the case if in (2.9) dd— can be arbitrarily choosen.
!
Since — according to suppositions — (2') of introduction, (2.14) and

the arbitrarity of dx*/dt bold, accordinng to (1.1) from (2.13) we get the
relation (1) with

(2.15) : Yii =0, T+o,T.
Thus it holds:

Theorem 2. If the metric tensor g, is an eigen tensor field, i. e. it
is satisfied (2') V, g ; satisfies (2.14) and for all vectors V' it holds (4) along
all curves x'(t), then the metric tensor g, is recurrent, i.e. it holds the rela-
tion (1) with (2.15).

§ 3. The case of symmetric tensors

In this paragraph we use relation (2) of § 1, and for symmetric ten-
sors T% analogous with (3) and (4) of the same paragraph the conditions

(3.1) PiPiTi=1Tv, t=t(x), x=x(),

(3.2) DT=(y,dx*—d7)=~'T, T:-g;TV, DTV-0,
where

(3.3) Ti=T%, g, Ph=guPl.

In [3] one from us proved that from (3.3), (1) and (3.1) and from (3.3),
(1) and (2) it follows the relation (3.2) if DT%=0 ([3] Satz 4 and Satz 7).

Theorem 3. From (3.3), (3.1) and (3.2) if cjii is arbitrary and DT7=0,
t
it holds:
(34) (Vk grS—Ykgrs) T7=0.
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Proof: From the second part of (3.2) according to (1.5) we have

v
@ TTar

DT _Dg;,.. DTV (DS’ Dsf
ar~ar L e g

along the curve C:x'=x'(t). Applying the analogous of (2.3) on DTV
and D3} and the analogous of (1.3) on Dg,] we get

(3.5) DT = Qi Qj(V, &, T dx* + g,,{ 0} 0! DT™
-0, 0/ (D3) T7- 0] 01 (D 8)) T}
Using (3.1) and DT™=0, according to (2.4) we transforme (3.5) in

DT=7='(V,g,) dx* T ~g,, 0j(D 3)) T” 0~ g, 0/ 01 (D §) T
Using (3.1) again we get

(3.6) DT=x"{(V,g,)dx*Tr—2g, T D3}}.
Applying D/dt on the condition (3.1) it follows the relation
DT D! ; ;DT dr
. Trs O ST e
(37 8y~ gt 28" =78y 0 Qs+ T

(for the complete proof see (4.5) — (4.11) of [3] since (3.1) is equivalent
to (4.5) of [3]). Substituting DT9=0 in (3.7) we get

mDS’ dr
(3.8) 28, T ~T5.

According to (3.8) from (3.6) we get
(3.9) %; v (V. g,) T —T0, } dxk.
t

Substituting DT from (3.2) in (3.9) it follows

(Vk ng) dxk Trs = Yk grs dxk Tr"

k
and according to the arbitrarity of a;i we get (3.4) and the proof is finished.
t

From (3.4) do not follows the validity of the relation (1) of introduction,
since T™ is not arbitrarily choosen. But if 7** is in (3.4) arbitrary then (3.1)
is independent of T, i.e.

(3.10) (PiPI—=8L8) T =0

holds for all symmetric tensors 775. Hence we have -
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Theorem 4 If P}=V'_rS;, and (3.1) — (3.3) hold along all curves X' (t)
and for all simmetric tensors TS, then it follows the recurrency g, i.e. the
relation (1) holds.

Proof. From the condition for Pj it follows that (1.1) holds for all
symmetric tensors 7%, and so is 77 in (3.4) arbitrary. Connsequevently from
(3.4) one has the relation (1) Q. E. D.

In the case, if instead of the relation (3.1) it hold the eigen-property of
the metric tensor g; and of Dg;, then it holds the following

Theorem 5. If (2), (2.9) and (3.2) hold along all curves C:xi=x!(t)
and for all symmetric tensors TV, then it follows (1).

Proof: According to the assumption' that (2.9) holds it follows that
(2.11) holds too. Using the contraction by Q; Q) and (2) from (2.11) it follows

i i D37 ; ;DY dv
00} i 007 Joo_ -1 %"
(3‘14) gm] QS Q' dt +gm1 Q'QS dt T dt grs'

Applying the contraction by 7" according to (2.4) from (3.14) we get

(3.15) £ {05 07 (D8I) T + 05, 05 (DS)T™} = +-1 T .
Using (2), (3.15) and the symmetry of tensors g, and TY from (3.5) we get
| DT=QiQ;(Vi8,) dx* TV + g, v~ DT" — =1 Td .
Applying the ‘condition that DT™=0, according to (3.2) we get
Q7 Q; (Vi 8,,) dx* TV =y, v~ g, TV dx*.
Since dx* and T¥=T% are arbitrary it follows that
(3.16) Qi Q;ngrs‘YkT_lgij=O*

Contracting the equation (3.16) with P, P} according to (2) we obtain (1) in
the form

Vi 8ab — Y 8ap =0,
and so the theorem is proved.

§ 4. The case of skew-symmetric tensors

In this paragraph we suppose that the metric tensor gy and Dg; are
eigen tensors with the same eigen value 7 (x), Le. it hold (2) and (2.9). Now
we observe the skew-symmetric tensors SY= —$/. Let be

1
4.1) Zijrr =‘2—(gih ik — 8k &n)
a tensor skew-symmetric in i,/ and %, k and

4.2) S2: =gijhkSijSthgihgijijShk

a skalar like in the foregoing observations. S represents the ‘;length” of the
tensor SY.
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Applying (1.5) on (4.2) it follows

) ~ DS? d "
4.3 —_— I _SSUSrs .
(4.3) @ (€8 )

From (4. 3) applying (1.1) on Dg; and according to the skew-symmetry of
tensor S¥ ‘and the parallel dlsplacement of them by a suitable procedure (for
the complete proof see [3], (5.2) — (5.3)) we get

DS? . D& cincrs Dsb sk,
4.4) 717—2 7 a5 8 4S,I,Qch hY
Using the consequences (2.12) resp. (2.11) of (2) resp. (2.9) — which after the
assumption hold — on the second term of the right side of (4.4), we have
DS?* Dgu . dT) at Cbs
(4.5) 7—2( dt -7 gab—g— gtsS Sos,

In followings we suppose that DS/dt is proportmnal to S 1f DS"/dt—
or in a more useful form

2 ij
(4.6) QS_ZZ dlsz _Di_o
dt dt dt

Substituting it in (4.5) we get

5&" _ drz . dxkv St s
( dt] 8ts— 7T 1gi,-g,s—d?'—<Pk—d—tgijgm)SztSJ =0.

\

According to the skew- symmetry and the arbitrarity of tensor SY it is equiva-
lent to

an s i) its) - g

dx* . .
~ 0~ {8y 8u—il)~J[s} = 0-

where i/t means the foregoing expression in them indices i and ¢ are changed.
For the differential D applied on purely co-resp. contravariant tensors it holds

the Leibniz formula and so is
B(gij 8i) = (Bgij) 8ist+ &5 (Bg,,).

According to it from (4.7) we get

D - ,dz dx*
a7 8118 880 =2 (8581~ 8is &) (T PTRALTE )
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Contracting by P Pl Pl P! and using the fact that g, 1s an eigen tensor we get

D ‘ ! dx dxk
- (gab &y~ &ay gbr) =212 (gab &y —gavgbr) (T_l —+ (Pk—) ’
dt dt dt .
or
2 k
D8arpy _ (d_f+ 2220, ﬂ_) s
dt \ dt dt

For the following observation it is necessary to suppose that the metric
tensor g; be not only eigen tensor, but an eigen tensor field satisfying (2').
Now using the formula (1.1) according to the condition that it holds (2) and
that dx*/dt is arbitrary we get .

(4.8) ' Vi 8arby =Yk Zarby
where
Ye= 0k T+ 27,
Theorem 6. If in a W— 0, space metric tensor 8; and Dg,; are eigen
tensors along all curves x'(t) with the same eigen value t(x), and if (4.6) is

satisfied for all skew-symmetric tensors SY, then is g,,; defined by (4.1) recur-
rent, i.e. it holds (4.8).

We prove still the following two corollaries:

Corollary 1. If in a Weyl space (4.1), (4.6) and (4.8) are satisfied,
then the space reduces on a Riemannian space.

Proof: If we suppose, that the space is a Weyl space, i.e. (1) and P}=38]
hold, then from (4.8) and (4.1) it follows v, g,,,,=0 i.e. v, =0, and so according
to (1) it is valid V,_g,,=0.

Corollary 2. If gu,, is recurrent, the metric tensor g, is an eigen
tensor and the dimension of space is n>2, then is metric tensor g; also recur-
rent, or V, g;=0.

Proof: From (4.8) on account of eigen-property of g; it follows

T(g” ngij +gij ngr.v _grj Yk 8is — 8is Vk grj)
=Yk (gij &rs _gi; grj')‘
After a contraction with g™ one has
(n-2)V, 8=y (n—1)~g"V,8,)8;

and this proves the corollary.
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