ON A PAPER OF SAHA AND RAY

Harry I. Miller¹

- 1. Introduction. In this note several basic mistakes in the paper of Saha and Ray [4] are corrected.
- **2.** Results. Let R^1 denote the set of all real numbers and \mathcal{L}^1 the family of all Lebesgue measurable subsets of R^1 . If $A \in \mathcal{L}^1$ then |A| will stand for the Lebesgue measure of the set A. Suppose that to each element ω belonging to a metric space Ω a certain transformation T_{ω} of \mathcal{L}^1 into \mathcal{L}^1 is associated. Neubrunn and Šalát [2] considered such families of transformations satisfying the following three conditions.
- (a) There exists $\omega_0 \in \Omega$ such that for every closed interval $\langle a, b \rangle$ and every sequence $\{\omega_n\}_{n=1}^{\omega}$ of elements belonging to Ω and converging to ω_0 ,

$$\lim_{n\to\infty} (\inf T_{\omega_n}(\langle a,b\rangle)) = a, \lim_{n\to\infty} (\sup T_{\omega_n}(\langle a,b\rangle)) = b \text{ holds};$$

- (b) If $E, F \in \mathcal{L}^2$ and $E \subset F$ then for every $\omega \in \Omega$, $T_{\omega}(E) \subset T_{\omega}(F)$;
- (c) If $E \in \mathcal{L}^1$ and $\omega_a \to \omega_0$ (in Ω), then

$$\lim_{n\to\infty} |T_{\omega_n}(E)| = |T_{\omega_0}(E)| = |E|.$$

Example 1. Set Ω equal to the real line R^1 equipped with the Euclidean metric. If $E \in \mathcal{L}^1$ let $T_{\omega}(E) = E + \omega$ (i.e. the set of all real numbers of the form $x + \omega$, $x \in E$). Taking 0 as ω_0 it is easy to see that properties (a), (b), and (a) are satisfied.

Example 2. Set Ω equal to the interval (0, 1) equipped with the Euclidean metric. If $E \in \mathcal{L}$, then for $\omega \in (0, 1)$, let $T_{\omega}(E) = \omega E$ (i.e. the set of all real numbers of the form ωx , $x \in E$). If we put $\omega_0 = 1$ then properties (a), (b), and (c) are satisfied.

M. Pal [3] considered an extension of the families of transformations of Neubrunn and Salát, namely for each ω belonging to a metric space Ω he associated a Transformation T_{ω} , mapping \mathcal{L}^n (the collection of measurable subsets of R^n (n-dimensional Euclidean space)) into \mathcal{L}^n in such a way that the family of transformations $\{T_{\omega}\}_{\omega \in \Omega}$ satisfies the following three conditions.

¹ This research is supported by the Foundation for Sientific Work of the Republic of Bosnia and Herzegovina.

(I) There exists $\omega_0 \in \Omega$ such that for every closed sphere $K = S[a, r] \subset \mathbb{R}^n$ and every sequence $\{\omega_n\}$ ($\omega_n \in \Omega$) converging to ω_0 ,

$$\lim_{n\to\infty} \left[\sup\left\{\left|a-T_{\omega_n}(K)\right|\right\}\right] = r \text{ holds.}$$

- (II) If $E, F \in \mathcal{L}^n$ and $F \subset E$, then for every $\omega \in \Omega$, $T_{\omega}(F) \subset T_{\omega}(E)$.
- (III) If $E \in \mathcal{L}^n$ and $\omega_n \to \omega_0$, then

$$\lim_{n\to\infty} |T_{\omega_n}(E)| = |T_{\omega_0}(E)| = |E|.$$

Saha and Ray [4] on page 238 of their work consider a family of transformations $\{T_{\omega}\}_{\omega\in\Omega}$ of \mathcal{L}^n int \mathcal{L}^n which they require to satisfy the following three conditions.

(i) There exists $\omega_0 \in \Omega$ such that for any two spheres $K_1 = S[a, r_1]$ and $K_2 = S[b, r_2]$ in \mathbb{R}^n and every sequence $\omega_n \in \Omega$ converging to ω_0 .

$$\lim_{n\to\infty} [\sup\{|a-T_{\omega_n}(K_2)|\}] = \min(r_1, r_2) \text{ if } r_1 \neq r_2$$

$$= r \text{ if } r_1 = r_2 = r.$$

- (ii) If E and F are two measurable sets in R^n such that $F \subset E$, then for every $\omega \in \Omega$, $T_{\omega}(F) \subset T_{\omega}(E)$.
 - (iii) If E is a measurable set in \mathbb{R}^n and $\omega_n \to \omega_0$ (in Ω),

$$\lim_{n\to\infty} |T_{\omega_n}(E)| = |T_{\omega_0}(E)| = |E|.$$

Here |a-B| denotes the set $\{|a-b|; b \in B\}$ where |a-b| is the ordinary Euclidean distance between a and b.

Clearly, no family of transformations $\{T_{\omega}\}_{\omega \in \Omega}$ can satisfy condition (i) as it stands for several reasons, the first and most obvious reason being that the expression $\lim_{n\to\infty} \{|a-T_{\omega_n}(K_2)|\}$ is dependent on a and b (as well as r_2), while the expression $\min(r_1, r_2)$ is independent of a and b. Secondly, $\lim_{n\to\infty} \{|a-T_{\omega_n}(K_2)|\}$ depends on a, b, and r_2 but not on r_1 , so that it being equal to the $\min(r_1, r_2)$ is absurd, for if $r_1 < r_2 < r_1$ and we take $K_1 = S[a, r_1]$ and $K_2 = S[b, r_2]$ then we get by (i) that the $\lim_{n\to\infty} \sup\{|a-T_{\omega_n}(K_2)|\} = r_1$, while if we take $K_1 = S[a, r_1]$ and $K_2 = S[b, r_2]$, then we get by (i) that the $\lim_{n\to\infty} \sup\{|a-T_{\omega_n}(K_2)|\} = r_2$.

Because of these difficulties (i) should be ammended to read as follows.

(i)' There exists a papir of poits (in R^n) a and b such that

$$\lim_{n\to\infty} \left[\sup\left\{\left|a-T_{\omega_n}(K)\right|\right\}\right] = r \text{ for every sphere } K=S[b,r], r>0.$$

Theorem 1 of Saha and Ray should be stated as follows.

Theorem 1' Supose A and B are two sets of positive measure in \mathbb{R}^n and a is a point of density one in A, b is a point of density one in B and ω_0 is a point in Ω . Supose $\{T_\omega\}_{\omega\in\Omega}$ is a family of transformations of \mathcal{L}^n into \mathcal{L}^n satisfying the properties (i)', (ii) and (iii) with respect to the points a, b, and ω_0 mentioned above, then there exists a natural number N_0 , such that for $n \geqslant N_0$ the set $A \cap T_{\omega_n}(B)$ has positive Lebesgue measure.

The proof of Theorem 1 of Saha and Ray is a proof of Theorem 1'.

More work is required on Theorem 2, for here a mere restatement of the theorem will not surfice, a new proof is also needed. Theorem 2 should reed as follows.

Theorem 2'. Suppose A and B are two sets of positive measure in \mathbb{R}^n and a is a point of density one in A, b is a point of density one in B and ω_0 is a point of Ω . Suppose $\{T_\omega\}_{\omega\in\Omega}$ is a family of transformbtions of \mathcal{L}^n into \mathcal{L}^n satisfying the properties (i)', (ii) and (iii) with respect to the points a, b, and ω_0 mentioned above, then if $\{\omega_n\}_{n=1}^\infty$ is a sequence in Ω converging to ω_0 and p is a positive integer, then there exists p strictly increasing integers n_1, n_2, \ldots, n_p such that

$$A \cap T_{\omega_{n_1}}(B) \cap T_{\omega_{n_2}}(B) \cap \cdots \cap T_{\omega_{n_p}}(B)$$

is a set of positive measure.

The proof of saha and Ray (page 240) breaks down, because while the set $C_1 = A \cap T_{\omega_{n_1}}$ (B) has positive measure it may turn out that a is not a point of densty one of C_1 and hence Theorem 1' can not be applied to the pair of sets C_1 and B.

We offer the following proof of Theorem 2'.

Proof of Theorem 2'. Let $0 < \varepsilon < 1$, then since a and b are density points there exists $r_{\varepsilon} > 0$ such that

$$|S[a, r_{\varepsilon}]| - |A \cap S[a, r_{\varepsilon}]| < \varepsilon |S[a, r_{\varepsilon}]|$$

$$|S[b, r_{\varepsilon}]| - |B \cap S|[b, r_{\varepsilon}]| < \varepsilon |S[b, r_{\varepsilon}]|$$

By (ii) and (iii) there exists N_{ε} such that $n \geqslant N_{\varepsilon}$ implies

(2)
$$|T_{\omega_n}(S[b,r_{\varepsilon}]) \setminus T_{\omega_n}(S[b,r_{\varepsilon}]) \cap B)| \leq |S[b,r_{\varepsilon}]| - |S[b,r_{\varepsilon}] \cap B| + \varepsilon |S[b,r_{\varepsilon}]| < 2\varepsilon |S[b,r_{\varepsilon}]|$$
 (by (1)).

By (i)' and (iii) there exists $N_{\varepsilon}' > N_{\varepsilon}$ such that

(3)
$$|T_{\omega_n}(S[b, r_{\varepsilon}]) \cap S[a, r_{\varepsilon}]| > (1 - \varepsilon) \cdot |S[a, r_{\varepsilon}]|$$
 for every $n \ge N'$.

By (2) and (3) we get

4)
$$|T_{\omega_n}(S[b, r_{\varepsilon}] \cap B) \cap S[a, r_{\varepsilon}]| > (1-3\varepsilon) \cdot |S[a, r_{\varepsilon}]|$$
 for every $n \ge N_{\varepsilon}'$.

For each $i = 1, 2, \ldots, p$, set $\varepsilon_i' = 1/6 \cdot 2^i$).

Then if $0 < \varepsilon < \varepsilon_i'$ we have

(5)
$$|T_{\omega_n}(S[b, r_{\varepsilon}] \cap B) \cap S[a, r_{\varepsilon}]| > (1 - 1/(2 \cdot 2^i)) \cdot |S[a, r_{\varepsilon}]| \text{ if } n \geqslant N'_{\varepsilon} \text{ and}$$

(6)
$$|S[a, r_{\varepsilon}]| - |A \cap S[a, r_{\varepsilon}]| < (1/(2 \cdot 2^{t}) |S[a, r_{\varepsilon}]| \text{ if } 0 < \varepsilon < \varepsilon_{t}^{t}.$$

From (5) and (6) it follows that

(7)
$$|T_{\omega_n}(S[b, r_{\varepsilon}] \cap B) \cap (A \cap S[a, r_{\varepsilon}])| > (1 - 1/2^i) \cdot |S[a, r_{\varepsilon}]|$$
 if $0 < \varepsilon < \varepsilon'_i$ and $n \ge N_{\varepsilon'}$.

Let ε be a fixed real number, $0 < \varepsilon < \min(\varepsilon_1', \varepsilon_2', \ldots, \varepsilon_p')$ and let n_1, n_2, \ldots, n_p be p distinct integers each larger then N_{ε}' , then it follows that

(8)
$$|T_{\omega_{n_i}}(S[b, r_{\varepsilon}] \cap B) \cap (A \cap S[a, r_{\varepsilon}])| > (1 - 1/2^i) \cdot |S[a, r_{\varepsilon}]|$$

for each $i = 1, 2, \ldots, p$.

From this it follows that the set

(9)
$$\left\{\bigcap_{i=1}^{p} T_{\omega_{n_i}}(S[b, r_{\varepsilon}] \cap B)\right\} \cap (A \cap S[a, r])$$

has positive measure, completing the proof.

Theorem 3 of Saha and Ray should be stated as follows.

Theorem 3'. Suppose A, B_1, B_2, \ldots, B_m are sets of positive measure in \mathbb{R}^n and a is a point of density one in A, b_i is a point of density one in B_i for each $i=1,2,\ldots,m$ and $\omega_0{}^i$ is a point of Ω for each $i=1,2,\ldots,m$. Suppose $\{T_\omega\}_{\omega\in\Omega}$ is a family of transformations on \mathcal{L}^n into \mathcal{L}^n satisfying the properties (i)', (ii) and (iii) with respect to the triple $(a,b_i,\omega_0{}^i)$ for each $i=1,2,\ldots,m$. If the sequence $\{\omega_n{}^i\}_{n=1}^\infty$ converges to $\omega_0{}^i$ for each $i=1,2,\ldots,m$, then there exists a positive integer N such that for $n\geqslant N$,

$$A \subset T_{\omega_n} 1(B_1) \cap T_{\omega_n} 2(B_2) \cap \cdots \cap T_{\omega_n} m(B)$$

is a set of posttive measure.

The proof of Saha and Ray of this result (page 241) breaks down, again because Theorem 1' is not applicable to the pair of sets C_1 and B_2 . However Theorem 3' ist true and its proof is similar to the proof of Theorem 2' given above and will therefore be omitted.

The proof of Theorem 4 of Saha and Ray also breaks down. This theorem and several other results about transformations of sets in \mathbb{R}^n are the subject of a recently written paper [1] of the current author.

REFERENCES

- [1] Miler, H. I., On transformations of sets in \mathbb{R}^n , to appear.
- [2] Neubrunn, T. and Šalát, T., Distance sets, ratio sets and certain transformations of sets of real numbers, Čas. Pro Pěst. Mat., 94 (1969), 381—393.
- [3] Pa I, M., On certain transformations of sets in R_N , Acta Facultatis Rerum Naturalium Universitatis Comenianae Mathematica, XXIX (1974), 43—53.
- [4] Saha, N. G. and Ray, K. C., On sets under certain transformations in R_N , Publ. Inst. Math (Belgrade), Tome 22 (36), 1977, 237—244.

Dimitrija Tucovića 8 71000 Sarajevo (Yugoslavia)