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SOME PROPERTIES OF FULLY SUBMITTED PROCESSES

Jelena Bulatovi¢ and Slobodanka Janjié

1. Let X={X(2), 0<<t<1} be a random process of second order, i.e. such
that || X (1)|?P=E| X (t)*< oo for all 0<¢t<C1. We denote by H (X;t) (H (X;t—0)),
0<t<1, the Hilber. space obtained as a closure (in quadratic mean) of the
linear manifold gen-rated by the elements X (s), s<<t (s<<?):H(X; t)=_Z{X(s),
sty (HX; 1—-0)=_F{X(s), s<t}); put H(X)=H(X; 1). We suppose X to be
nondeterministic, i.e. H(X; 0)=0. The orthogonal complement of H (X; t) with
respect to H(X) we denote by HL (X;t):HL (X;t)=HX)OH(X;t). For the
process X (as well as for the other processes) the following equality will be valid:
H(X; t—0)=H(X; t).

The projection operator from H (X) onto H (X; t) we denote by Ey(?); it
is ea'y to see that the family Ey={Ey(t), 0<<r<1} represents a resolution of
the identity of the spice H(X), [1, 3]. Every element zEH(X) generates the
measure m, induced by F,(¢) = || Ex(¢)z{|?, 0<¢< 1. We introduce in the ordinary
way the equivalence relation in (he set of all measures generaied by the elemets
from H(X): two measures are equivalent if and only if they are muiually
absolutely continuous. The speciral type of the element z is the equivalence
class of the measure m,

The Hilbert space _#, spanned by the elements E, Nz, 011,
for arbitrary z& H (X), we call the cyclic spice with respect to Ey, generated
by z: M,= F{E,()z, 0<t<1}; the spectral type of _, is the speciral type
of the element z.

We say that the arbitrary subspace s of H(X) is invariant with respect
to E, if Ex(t) M C /! for all ¢, and that g/ reduces E, if both 7 and H(X)OM
are nvarian. with respec. 10 Ey. It is eusy 10 see :hat, for any z<& H(X),
cyclic sub pace _g, reduces Ej.

If a random process Y of tecond order is such that the relation

H(Y; ) CH(X:t) for all ¢
holds, we say that Y is submitted to X; if toge‘her with the preceding relation,
HL(Y; ) CHL (X; 1) for allt

holds, we say that Y is fully submit ed to X. It con be shown [2] that Y is
full/ submitted to X if and only if for all ¢ the subsp.ce H(Y; t) reduces ihe
resolution of the iden.ity £, of H (X).
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In this paper we shall find, under the assumption that Y is submitted
to X, conditions for the process Y*, submitted to ¥ and fully submitted to X,
to exist. The method we uce is constructive, so that, in case that Y* exists, we
can construct subspaces H(Y*;t). Y* can be considered as the best estimation
of the process Y by a process which is submitted to Y and fully submitted
to X, in the sense that, if Y** is some other process submitted to Y and
fully submitted to X, then it will be H(Y**; t)C H(Y*; ¢t) for all .

2, Definition 1. We say that the element x&H(Y) is s-regular
if x€EHL(Y;s) and x& HL (X s).

Obviously, every element from H(Y) is O-regular, so that the only
interesting case is when, for x& H(Y), there exists an s>0 such that x is
s-regular.

The number s, we define by

M se=sup{s:xCH (Y; 5)}.
Lema 1. The relation s,&{s:x&HL (Y; s)} is valid for every x& H(Y).

Proof: From (1) it follows that x1 H(Y;s) for all s<s,, i.e. that
x| H(Y;s,—0). But, as H(Y; t—0)=H (Y; t) for all ¢, we have x| H(Y; s,),
which is equivalent with the assertion of the lemma.

Definition 2. An element xCH(Y) is regular, if it is s,-regular,
where s, is defined by (1). The number s, is the regularity level of the
element x. :

Let us suppose that there exists at least one regular element in H(Y);
later, we shall show by an example that the set of regular elements can
be empty.

Definition 3. We say that the element x& H(Y) is strictly regular
if the elements E,(¢)x and x —Ey(¢)x are regular for all ¢z,

Obviously, every strictly regular element is regular. By the following
example we shall show that the inverse does not hold, i.e. that from the fact
that x is regular it does not follow that Ey(tf)x and x—Ey(f)x are regular
for all ¢.

Example 1. Let x=x;+X,, 5x,<Sx,, X; is regular and x,CH(Y; sy,).
We suppose that x, is sx,-regular, but not regular, which is possible, because
of s, <5x,. Then, x—Ey(sx,)x=x, is not regular, so that x is not strictly
regular. '

For a (strictly) regular element x the relation ¢<(s, is equivalent to
x| H(X;t). For every x& H(Y; t), (strictly) regular or not, it follows s,<t.
Therefore s,<t, for every ¢, where

se=sup{s:Y()EHL (Y; s)}.
Theorem 1. Element xC H(Y) is strictly regular if and only if

(3] Ey(t)x=Ey(t)x for all ¢
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Proof: Let x be strictly regular, and #, an arbitrary number from (s,, 5,”’],
where

sy =inf {s:xC H(Y; 5)}.
Then, obviously, (2) is valid for t<s, and t>s,"”. Let
X, ()=Ey(t)x, X, (1)=x—Ey(t) x.

It is easy to see that the equah'ty (2) is equivalent with

(3) Pyxinenw;nx=0 for all ¢
Let us put
C)) PH(X;:)@H(Y;;)X=X;,

and show that x,=0 for any r. As x=x,(t)+x,(t,) for any ¢, it follows
from (4) that

Xe=Prx; 1) 0 H(Y; 1) %, (1)

But, as x,(t,) is regular and x,(t) LH(Y; t,), we have x,(t;) | H(X; t,) and
that implies x,=0, which, because of (4), means that (3), ie. (2) is valid.
Let us suppose that (2) holds. It follows that

X ()=Ex(t)x, x,(1)=x—Eyx(t)t,

so that we immediately conclude that x,(t) and x,(t) are regular for any ¢,
i.e. x is strictly regular. Really, if x, (t) L H(Y; s5) for some §<t, that means that

0=Ey(s) %, (1) = Ey (s) x = Ey (s) x = Ey (5) Ey (1) x =
=Exy () Ey (1) x=E (s)x, (1),
that is x, (1) L H(X; s). In the same way, if x,(t) L H(Y; s) for some s>>¢, then
0=Ey(s) %, (1) = Ex ()X = Ex (£) x = Ex (s) (x — E4 () x) =
=Ex(5) (x—Ey (t) x) = E4 (5) x, (¢),
which is equivalent with x,(t) | H (X; s).

Consequence 1. If x is striotly regular, then the elements Ey(t)x
and x—Ey(t)x are strictly regular for all 7.

Lemma 2. A finite linear combination of strictly regular elements is
strictly regular.

Proof. It is enough to prove that the assertion holds for the sum of
two strictly regular elements x and y. Let s, and s, be the regularity levels
of x and y, respectively; suppose that 8,<s,. Put z=x+y and

2/ ()=Ey()z=x,(t)+y,(1); 2z, O)=z—Ey(t)z=x,()+,(1).

First, we shall show that z is regular. Obviously, for the regularity level of z
we have s,>s.. Only when 5x=38,, it could happen that s,>s,; when 5.<S,
we have always that s,=s,.
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Let us suppose that s,>s,. Then it must be x, (s,)= —y, (5,), from which
we have that z=x,(s,)+y,(s,). From the strictly regularity of x and y, and
from Theorem 1 it follows that z | H(X; s,), that is z is regular. The regularity
of the elements z, () and z,(¢) follows immediately from the Consequence 1
and the above proof of the regularity of z. Hence, by Definition 3, z is
strictly regular.

Lema 3. If {x,}7 is a convergent sequence o strictly regular elements
from H(Y) and [ i. m. x,=x, then x is strictly regular.

Proof: We shall show first a) that E,(¢)x is regular, and then b) that
x—Ey,(t)x is regular.

a) E,(¢)x is regular if, together with all s for which Ey(t) x& HL (Y ),
we have that E,(t)xE H+(X; s). Let us suppose that for some s(s<t) the
relation E,(t)x& HL (Y; ), i.e. Ey(t)x LH(Y; s), holds. Then, by reason of
strictly regulirity of the elements x,, #n=1, 2,..., and because of Theorem 1,
we have

0=E,(E,(Yx=1Lim E,(s)x,= 1. i. m. Ex(s)x,=Ex(s) Ey(?) x.
n = n—ro0

Therefore, element Ey(#)x is rcgular for all . It remains to prove b) that

x—Ey(t)x=x,(t) is regular. If x,(t) LH(Y;s) for some s(s=7), then, by

the same reasons as above, we have

0=E,($)(x—Ey(O)x)=1i m Ey(3)x,~1 i m Ey(#)x,=

n—rco

=1 i m Ey()x,— 1. i.m. Ey(t)x,=E,(s) (x—Ey(t)x).
n—roo n—co
The natural question is: what could be said abouﬁe regularity level of the li-
mit of a sequence of (siric.ly) regular elements? Let s=lim s,,. From the sequence

n—o0

{x)}7, I.i.m. x,=x, we can choose a subsequence {xu}; such that klim Sspy = 5.
—>c0

n—-o0

As elemen s x,, are (striclly) regular and xn, | H(Y; sy,), it follows that

x LH(Y; lims,,) and x | H(X; lim s5x,,),
k—ro0 k—ro0

i.e. x is s-regular. Therefore, we have

(5) St. 4. .y riEan.

n—ro

The following example chows that in (5) we can have a strict inequality.

Example 2. Let y, and p, be two arbitrarily chosen stric ly regular

elemen's, such that s, <s,, Let x,=a,y,+y,, n=1,2,..., where {a,}i isa
sequence of real numbers converging to zero. It is easy 0 see dhat L iom. x, =3y,

n—roo

which means that sy, ;. m. x,= Sy,» However, s

Sxp={mins,,, $y,} =5,
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it follows that

Stt.m. xp="Sy,>8p, = lim 5., = lim s,,.
n—re n—>00

3. Let us denote bu H* the set of all strictly regular elements from H Y).
It follows from Lemmas 2 and 3 that H* is a Hilbert space. In order to
define a process Y*, fully submitted to X and submitted to Y, it is enough to

determine the family of subspaces H: , 0<t<1, such that H: reduces the
resolution of the identity Ey={E; (s), 0<s< 1} of X and H: CH(T;1),0<1<1,
[2, 3]. Really, if H,, 0<<t<1,is an arbitrary nondecreasing family of subspaces,

a process Y*, such that H(Y*;t)=H,, 0<t<1, always exists and has requi-
red properties, [1].

Let the family H: » 0<t<1, be defined bu the equality
H{ =Ey(t) H*, 0<t<1.
Denote by Y* the process which satisfeis the equality
H(Y* t)=H,, 0<t<]l.

Obviously, Y* is submitted to ¥, and then to X, too; let us show that it is
fully submitted to X. First of all, we have that Ey(t)xEH*, for any x& H*.
Really, since x is strictly regular, E,(f)x is also strictly regular, and therefore

Ey(t)x&H*. Hence H, CH*. It is easy to see that any element x& H*, which
is orthogonal to H, for some #, will be also orthogonal to H (Y; t); really, if

Ey(t) x=x,7#0, then, by reason of HE CH*, x, belongs to H;, which contra-
dicts our assumption that x& H*OH,. Thus, the following theorem is proved.
Theorem 2. Process Y*, for which the equality]
HY* 1)=Ey(t)H*, 0<t<1,
is valid, is submitted to Y and fully submitted to X.
Remark. It is easy to see that the following equalities are valid:
H; ={ySH* yCH(Y; 1)}
H* ={yEH* yCHL(Y; 1)}.
The next theorem gives one interesting and not so obvious property of Y*,

Theorem 3. Let Y be an arbitrary process, submitted to X. If Y* is
a process submitted to Y and fully submitted to X, then Y* is also Sfully
submitted to Y,

Proof. As Y* is fully submitted to X, the space H (Y*) could be
represented as orthogonal sum of the subspaces of H(X), cyclic with respect
to Ey. If we denote the generating elements of those cyclic subspaces by z,,
vEc/f, and the corresponding subspaces by Mz, vEc/), then we shall have

H(Y*) = ;ea/fzn and H(Y*; t)= g@E; (2) Mz

2 L'Institut mathématique
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(f dim H(Y*)=¥,, then card <f/=¥,, and the last sum would be formal).
If, for every vEc/, we define the process Z, by
Z,(=Ex(®)z, 0<t<1,
then Z, would be the process with orothogonal increments and the equality
H(Zy; )y=Ey (1) Mo 0<t<1,

will hold for any vEc/; it is clear that every process Z, is fully submitted to X.
It is easy to see that

HL(Z,; 0)=_P{Z,)-2,(1), t<s<l}, 0<i<l.

But, as H(Y*;t)CH(Y;t) for every t, we have Ex(t)z,=Ey(t)z, for every ¢,
and then .
HY(Z,; )= _L{Ey()—Ey(®)z,, t<s<l), 011

As (Ey()—Ey () z,EHL(Y;t) for all s>t, then HL(Z;t)CHL(Y;¢) for
every t. Therefore, the process Z, is, for every v, fully submitted to Y, which
implies that Y* is fully submitted to Y, too.

By the following example we shall show that Y* does not always exist.

Example 3. Let » be a Wiener process defined on [0; 1], and let
X(H=0(@), YO=o(@?), 0<t<1
It is clear that the equality H(X)=H(Y) holds, but, for any r<1, we have
H; )=_P{o@), ust}=_FLl{owW), ust?}=HX;>)CHX;?),

which means that Y is submitted to X. Let us show that Y is not fully submitted
to X. From the assumption that ¥ is fully submitted to X it follows that any
element x&H (Y), which is orthogonal to H (Y;t) for some ¢, will be also
orthogonal to H(X;t); it is easy to see that such an element x, bacause of
H(Y; t)=H(X; t?), can have the following form:

1
x=[ fedo @),

where f is a function from L,(dt), not identicaly equal to zero on (t?, t). But,
such x is not orthogonal to H(X;?), since it is not orthogonal, for
’ 1

example, to the element f fWdeo (), which belongs to H(X;t). Thus, we
2

&
proved that Y is not fully submitted to X. Let us show that H(Y) does not
contain any regular element. If such an element z exists (let s, be its regularity
level), then, as follows from the previous discussion, z could de represented
in the form

1
2= fwdo@,
52

z
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where f(u)#0 for almost all w<(s?, s,2+h), for some A>0 (because, othe-
wise, 5, could not be the regularity level for z). But we have already shown
that such element is not orthogonal to H(X;s,), which means that it is not
regular. Thus, we showed that H(Y) does not contain any regular element and
the consequence of this fact is that the process Y*, submitted to Y and fully
submitted to X, does not exist. -

It is clear that the necessary and sufficient condition for the process Y*
to exist is the existence of least one regular element. Now, we shall give the
necessary and sufficient conditions for the existence of Y* in terms of the
resolution of the identity of X.

Theorem 4. The process Y* exists if and only if there exists at least
one element z& H(Y), such that

6) Ey(t)z&H(Y; t) for all ¢

Proof. Let us first suppose that Y* exists; from this assumption it
follows that in H (Y) there exists at least one strictly regular element z. For
this element z, by reason of Theorem 1, the equality Ey(¢)z=E,(t)z holds
for any ¢, which implies that (6) holds.

Let us suppose now that there exists an element z from H(Y) such
that (6) is valid. We define Y* by

Y*(t)=E,()z, 0<t<I;

from this definition it is clear that Y* is fully submitted to X, and from (6)
it follows that it is submitted to Y.

From Theorems 3 and 4 it follows that a necessary condition for the
existence of Y* can be expressed in terms of spectral types of X and Y.

Theorem 5. Let oy and py, be maximal spectral typesV of the proces-
ses X and Y, respectively. The necessary condition for the existence of Y* is
that inf {py, py}7#0?.

Proof. If Y* exists, then, according to Theorem 3, it is fully submitted
to both X and Y. For an arbitrary z from H(Y*), we have, according to
Theorem 4, E; (t)z=E,(t)z, 0<t<1, which means that z generates the same
spectral type p, with respect to both resolutions of the identity. Thus, we
have 0,#0, p,<py and p,<py, from where we have that inf {p,, py}>p,#0,
and our assertion is proved.

The following example will show that inf {py, py}5#0 is not a sufficient
condition for Y* to exist.

) We say that py is the maximal spetral type of X if any element z& H (X) induces
the spectral type p, which is subordinated? to py.

) We say that the spectral type p is subordinated to spectral type @, and we
write p<p, if any measure of the spectral type p is absolutely continuous with respect to
any measure of the spectral type .

) By inf{p, w} we denote the greatest spectral type which is subordinated to p
and p.

2¢



20 J. Bulatovi¢ and S. Janji¢

Example 4. Let the processes X and Y be defined as in Example 3.
Both processes are Wiener, so that they have a unit multiplicities and the
spectral types py and p, are equal to the ordinary Lebesgue measure. Therefore,
inf {py, py}#0, although Y* does not exist, as it is shown in Example 3.
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