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1. Introduciicn
Let r denote positive integers with the property thet

(1.1) xlog=ex< 2 l<xlog=?x

x<r<i2x

for some fixed a>0 and some absolute constants implied by the symbol <.
Here as usual f(x)<g(x) is equivalent to f(x)=0(g(x)) end meens |f(x);<
<Cg(x) for some fixed C>0 and x>x,. The aim of this note is to prove
as x—o

(12) S (¢(x7”)—¢(§))=(1+o(1»h S

Q<r=2Q Q<r=29

where @ and h are suitably chosen functions of x, and to deduce hence the
existence of integers of the form pr in th: interval (x, x+ 4] for x sufficiently
large. Here as usual p denotes a pr.mz «nd

(1.3) ¢(x)="><ZXA<n>= 2> logp,

P*=x

where the von Mangoldt function A(n) is d-fned to be logp if n=p* cnd
zero otherwise. Snce no other properties of th: integers r are used bes des
the weck estimate (1.1), it is natural to exp.ct that shirper results than ours
may be obtained by utilizing deeper properties of each portculer sequence r.
The principzl tool in dealing with the I.ft-hand side of (1.2) is E. Landau’s
clussical formule ([6], Ch. 7)

(1.4) Y(x)=x— 2 x°/p+0 (xT-'log?xT)+ O (log x),
|y =T

=
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where T=T(x) will be suitably chosen later, and p=R+iy is a zero of the
zeta function {(s) with 0<B<1 and —T<y<T. As usual N (o, T) will denote
the number of zeros p satisfying 0<<o<B<1 and ~T<y<T. Estimates for
N (o, T) may be written as

(1.5) N (o, T)<TACU-9)[ogD T,

where we suppose that the <€ —constant is uniform in o. For c<<1/2 we
have trivially 4 (c) (1-6)=1, D=1, while for 6>1/2 we have 4 (0)(1-0)<1
and A (o) (1 —¢) is nonincreasing. Our main result will be the following

Theorem. Let r denote positive integers satisfying (1.1). Suppose C>2
is the number such that (1.5) holds with 4 (c)<C uniformaly in o, and that
further 4 (¢)<C,<C with some C,>2 uniformly for u<oc<1, where u is a

number satisfying 1/2<u<1. Then if Q=x/h, h>x'~€2+D" oM % we have
as x—» oo

» (¢(——x+h)—¢(1))=(1+o(1»h S,
Q<r<20Q 14 r Q<r<2Q
provided that

(1.6) M>D+2a+9)/(C+2) (1 —u).

2. Proof of the theorem
Supposing T=T(x)<x we obtain from (1.4)

@D | Q<éw(¢<x7+h)_ ¢(%))=

=h > l/r—S-l-O(xT“l]ogzx- > I/r),'

Q<r<2Q Q<r<2Q
where ‘we have set

2.2) S= | ﬂquo C(x, p) Py (p),

(2.3) C(x, p)=((1+h/x)— 1)/,

24 Poe)= 2 re.
0<r<2Q

To estimate various sums involving zeros of {(s) we shall use (h=o0(x)

as x— )
x+h x+h

((+hP-x9)fo= [ z-tdz [ | 2271 |dz<hx®1,

which yields
(2.5) C(x, p)<min (1/Q, 1/|v|),

where

(2.6) - Q = x/h.
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We shall also use the following inequality (A. Walfisz [8]) for the zero-
-free region of L (s):

2.7 B<1-K3([v])

where |y|>7, 8(x)=log=23x-(loglogx)~13, K>0, so that x~X¥x<log—4 x
for any fixed 4>0 and K>0 (in what follows 4 and K may denote different
positive, absolute constants). We now choose

2.8) h=x!-€2+D7 [ogMx T — xC12+D)7 5020 x . Jog log x,

where C and M are numbers that appear in the formulation of the theorem.
Since Q< T by (2.6), we may write S as

2.9) S=8,+8,+5,+S,,

where using (2.5) we obtain

(2.10) 5,<Q7" 2 x*|Py(p)l;

B=u, [ v[=Q

2.11) S, 2 x| Py v

B=u, Q< v T

(2.12) 5,071 2 x*|Py(®)],

0<B<u, [v|=<0Q

(2.13) A 2 x| Pl

0<B<u, O<|y|<T

where » is the number that appears in the formulation of the theorem. We
now introduce the weighted density function W (s, t) as

(2.14) W, )= 2 |Py(e)l,

Bz=a, | v <<t
and proceed to estimate S;. We have

<)
(*-x) [Py |=logx- S |Py(p)|[x"do=

B=u, | v|<Q B=u, | v|<0Q

(2.15)

1
=logx-f > [Po(p)|x°do,

u B=o, | Y |=Q

which implies

(2.16) S;<log x- max x° W (s, Q)/Q.
u<o<l
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Similarly it follows using (2.15)
x| Po (@) [(1/]y|-1/T)=

B=u, Q<|v|<T

(2.17)
T T
S |Pe@x [t2dt=[t2 S xP|Py(e)|dt=
B=u, Q<|v|<T [vi 4] B=u, O<| vt
T T 1
=[t2x (W, )~ W, Q)di+ [1-2logx- [ x*(W(o,1)—
Q o] u

—W(o, Q))dodt<x*logT- max W(u, t)/t+
o<t<T

+log x-log T'max x° max W (o, t)/t.

u<o<l Q=u<T
Therefore we obtain

(2.18) S, +S,<log? x- max x° max W (o, t)/t.

u<<o<l Q<<T
The same technique leads also to

2.19) S;+S,<log?x. max x° max W(a, t)/t,

0<<o<<l Q<u<T
and thus we are left with estimating W (o, t). To do this we shall use the
following inequality ([2], eq. (19.24) with g=1):

Let s,=¢,+it,(1<r<R) be complex numbers satisfying 0<os<o,<]1,
—T<t,<T, t,,,—t,>3>0. Then for arbitrary complex numbers a, (1<n<N)
we have :

(2.20) 2| 2 an <@ +logN)logN- 3 (n +T)|a,)’n~*
<N n<<N

r<R nm

Using the Cauchy-Schwarz inequality we obtain from (2.14) and (2.4)
(2.21) W2(s, )<N(s,1) > > orelh
B

>0, |v|<t Q<r=2Q

We now apply (2.20) to the above sum by taking T'=t, N=2[Q], a,=1
if n=r and N/2<n<N and a,=0 otherwise, and 8= 1 by picking representative
zeros p,=B,4+1y, with v,,, —v,>1, such that these zeros contain a proportion
of at least >1/log? zeros of all zeros counted by N (g, ¢). This may be done
since N(o, t+1)— N (o, t)<logt uniformly in o (see [2], Ch. 12). Hence

W2 (o, 1)< N (o, 1)logd x- (Q + 1) Q1~2°,
and since t<T=Q log?x-loglogx by (2.6) and (2.8), this implies
(2.22) W(o, t)<(N (o, 1))2 Q' log? x - log log x.
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For u<e<1 we have supposed A4 (c)<C,<C, and so using (2.7), (2.8),
(2.18) and (2.22) we obtain

S, +8,<LlogAx- max x°Q4@0-o)2-1Ql-cg

u<6<<1—K 8 (x)

(2.23) hlogdx. max x°~!1 Q@12+ (-og
u<<o<<1—-K 3§ (x)

hlog4 x - x~K(C—C)3MIC+D = o (hlog—2 x)
since C>C,. Similarly we obtain from (2.19)

S3+8,<log? x- max x” max tA()(1-)2-1]ogDI2 x . ]0g5? x . Jog log x - Q1-°
0<o<u Q<I<T

(2.29) < hlogP+912 x.Joglog x - max x°~1 QU©@2+D(l-o) g

0<osu

< hlogP+912 xloglog x- max x°-1(x(C/2+D)~! [og~M x)(Cl2+ D(1-0) ¢
0<So<<u

<hloglog x- (log x)(P+92-=MU-(C]2+ ) — ¢ (hlog~* ),

since by hypothesis (1.6) holds.

This means that S=o(hlog=*x) with & and T given by (2.8). Finally
by (1.1) we have )

log=2x< > 1jr<log=—?x,
Q

o<r<2

and this implies by (2.1) that (1.2) holds, since by our choice of T we have

xT-'log?x- 2 1/r<h(loglogx)~t 2 1/r=o(hlog=°x)-
o] . Q

g<r<2 Q<r<2

3. Applications and remarks

Before we proceed to give some applications of our theorem, it should
be remarked that our result is a generalization of an unpublished result of
D. Wolke [9], who has proved Cor. 2 with A= x%'1+s, Both proofs utilize
(2.20) (which may be regarded as a a mean-value theorem for Dirichlet
polynomials) to estimate the weighted density function W (s, t). The same idea
was used by H. Iwaniec and M. Jutila [5], where by a combination of sieve
and analytic methods they prove that p,,, — p,,<p:,3/23+e, where p, denotes the
n-th prime number.

To deduce number-theoretic corollaries from our theorem we may write

(3.1 2, (¢(x+h)—¢(—xr—))= > 2 logp+R,

Q<r<290 r Q<r<2Q x/r<p (x+h)fr




96 A. lvie

where

(3.2) R= 2 2 logp<

Q<r<<2Q xfr<p*<(x+h)r, a2

< 2 L+ (e B/ —(x/r)'P) log? x<
o<r=20

Qlog2~%x+hx~12log2x. > r‘1/2<(Q+hQ1/2x“‘/2)log2“’x=o(hlog‘“x).

o<r=290

Therefore we obtain

Corollary 1. Under the hypotheses of the theorem we have for x>x,

3.3) > 1>hlog=1-4x,

X<pr<<x+h, Q<r<2Q

so that there is an integer of the form pr in the interval (x, x+ h] for X>x,
and h>x'-©€2+D7 oM x where M satisfies (1.6).

Using the explicit formula for the sum ¢ (x; k, [)= > A
n<<x, n=1(mod k)

instead of (1.4) (see [6], Ch. 9, eq. (2.5)), one could replace (3.3) with

3.9 > 1>hlog=1-4x,

x<pr<<x+h, p=1(mod k)

where k and [ are fixed coprime integers, and 4 and M are as in the theorem.
Latl% Note that for any fixed e>0 we may take

(3.5) C=12/5, D=9, u=3/4+e.

This follows from the estimates of A. E. Ingham and M. N. Huxley
(see [2] and [3])

(3.6) N (o, )T =929 10g5 T,
3.7 N (o, T)LTC-HU~a*+o-1) Jog? T,
Since 3/(2-06)<12/5 for 6<3/4, and (56—3)/(c®+0o—1) is decreasing for

6>3/4 with a maximum of 12/5 at 6 =3/4. Thus 4 (o)< 12/5—¢, for 6>3/4 +¢,
where g, is a positive number depending on e.

If we choose now for r the sequence of primes, then a=1 in (1.1), and
from Cor. 1 and (3.5) we obtain

Corollary 2. For x>x,, Q=x/h and A>x%"10g!%x we have

(3.8) > 1>hlog=2x,

x<py pa=<x+h, Q<p1<<2Q

where p,, p, denote primes.
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This result is almost as good as H. — E. Richert’s sieve result (1,
Ch. 9), but the author has been kindly informed by D. Wolke that H. Halber-
stam, D. R. Heath-Brown and H. — E. Richert have recently jointly proved
that there is a p, p, in (x, x+x*] for x>x,and w=0.45... . Sieve techniques,
however, have the disadvantage of rarely being able to produce an asymptotic
formula like (1.2), but only a lower bound of the right order of megnitude.

As another example, let r denote now integers such that both r and r+ 1
are representable as a sum of two integer squares (such numbers are called
B-twins). It follows from the work of K. — H. Indlekofer [1] that (1.1) holds
with a=1 if r denotes B-twins. Therefore similarly as in the previous example
we obtain

Corollary 3. If x>x, an h=>x5"11og" x, then

(3.9) > 1>hlog2x

X<pr<x,r&R

where R denotes the set of B-twins.
Finally let r denote integers representable as

(3.10) r=p>+p?,

where p, and p, are odd primes. G. J. Rieger proved in [7] the asymptotic
formula

G.11) > 1= % xlog=2x. (1+ O (log=2%? x - log x)?13)),

r<x
so that in this case (1.1) holds with a=2, and we obtain

Corollary 4. If x>x, and h=x5'1]og?' x, then

(3.12) > 1>hlog=3x,

x<pr<x-+h

where r denotes integers of the from (3.10).

Finally I wish to thak D. Wolke for making his unpublished manuscript
[9] avaifable to me, and Mathematical Inst. of Belgrade and Rep. Zajednica
of Serbia for financing this research.
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