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In the present paper finite graphs without loops and multiple edges will
be considered. If not stated otherwise, the vertices of a graph G will be labe-
led by v;=v;(G), j=1, 2, ... . The egde connecting the vertices v, and v, is
denoted by e,,.

If G and H are isomorphis, we shall write G=H. The direct sum (or
union) of graphs G, and G, is denoted by G, +G,.

Notation and terminologv not introduced here follows the book [8].

The path and the cycle with n vertices will be denoted by P, and C,
respectively. P, is just an isolated vertex. The vertices of P, and C, will be
labeled so that v; and v;,, are adjacent (j=1, 2,...,n—1). Thus P, +e,,=C,
(n=3).

Let G and H be two disjoint graphs. Then the graph G (r, s) H is obta-
ined by connecting the vertices v,(G) and v,(H) by a new edge. The graph
P,(1, 1) C(s, 1) P, is constructed by joining the vertices v, and v, of the cycle
C, to the terminal vertices v, (P,) and v, (P,) of P, and P,, respectively. The
graph C,(1, 1)P,(n, 1) C, is constructed by joining the terminal vertices v, and
v, of P, to (arbitrary) vertices v, (C,) and v, (Cy) of C, and C,, respectively

(see Fig. 1).
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68 1. Gutman

Let v, and v, be two adjacent vertices of a graph G with n vertices. The
substitution of the edge e,, by a path with a vertices yields the graph G (e,, | a)
with n+a vertices.

The dot product C,-C, of the cycles C, and C, is obtained by identi-
fying a vertex of C, with a vertex of C,.

Let P,, P, and P, be three disjoint paths (a>3, >3, ¢>3). By identi-
fying the vertices v, (P,), v, (P,) and v, (P) and by simultaneous identifying the
vertices v, (P,), v,(P,) and v.(P) one obtains a bicyclic graph Q(a, b, c¢) with
a+b+c—4 vertices (see Fig. 2).
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Definition 1. A subgraph of G induced by k independet edges is
called a k-matching of G. The number of k-matchings in G is denoted by
p(G, k).

It is both convenient and consequent to define p (G, 0)= 1 for all graphs G.

The numbers p (G, k) play an important role in various chemical [1, 5,
6, 7, 10] and physical [9] theories. They have been subject also to several
mathematical investigation, [2, 3, 4, 11]. We mention here only the following
results.

1. For every graph G there exists a number K=XK(G), such that [11]
PG, D<p(G, 2)<---<p(G, K)=p(G, K+ 1)=p(G, K+2)>- - ...

2. The matching polynomial of a graph G,

o (G)= lgl(—— Dk p (G, k) w—2k

/
k=0

coincides with the characteristic polynom’al of this graph if and only if G is
a forest [4].

3. All the zeros of «(G) are real [3,9].
4. The recurrence relation [2,4]

(1) p(G’ k)=p(G—€”,k)+p(G—Vr—V:,k—l)

will be frequently used later.

Since P, has no edges, p(GiP, k)=p(G, k).

We introduce now a quasi-ordering of graphs accord:ng to the number
of matchings in them.



Graphs with greatest number of matching 69

Definition 2. For two graphs G and H we write G>>H if p (G, k)=
=p(H, k) for all k=1, 2,.... If G>>H and H>G, then we call the graphs
G and H matching equivalent and write G~H.

Combining Definitions 1 and 2 one immediately arrives to the following
two conclusions.

Lemma 1. If H is a subgraph of G, then G>>H. Moreover if the edge
set of H is a proper subset of the edge set of G, then G and H are not matching
equivalent.

Lemma 2. GiP,~G.

Let v be a set of graphs. Then the relation ~ is an equivalence relation
in this set. The corresponding equivalence classes will be called the matching
equivalence classes (of the set vy). Clearly, the quasiordering > induces a par-
tial ordering in y/~.

Let v, Y,, - .. be the matching equivalence classes .of y. As usual, a
class v, is called the greatest class if y,>v; for all j=1, 2,.... This maxi-
mal class (provided it exists) will be denoted by y,. The graphs from vy, will
be said to have greatest number of matchings in the set y. When ambiguities
are avoided, the elements of vy, will be simply called the greatest graphs in vy.
' v, is the second greatest class in y (and its elements are the second
greatest graphs in y) if v,>vy; for all j=2, 3,....

The third greatest, fourth greatest etc. matching equivalence classes and
the third greatest, fourth greatest etc. graphs are determined analogously.

Of course, greatest classes in a set of graphs need not exist at all. The
smallest pair of graphs which are mutually incomparable with respect to the
slation > are C, and P,+P,.

We denote by v (n) the set of all graphs with n vertices and by $(a, b)

n

1e set of all bipartite graphs with a+b vertices. Further, I'(n)= U v (/) and
i=t
a b

(a, b)=1J U B (i, j). The set of all graphs with n vertices and cyclomatic
i—1j=1

imber ¢ is y(n, ¢) and I'(n, ¢)= U v (/J, o).
j=1

In a previous paper [5] it was established that the unique greatest and
e unique second greatest graphs in the set y(n, 0) are P, and P,_,(3, 1) P,,
spectively. This result can be slighty improved as follows.

Theorem 1. P, and P,_,(3, 1) P, are the unique greatest and the unique
second greatest graphs, respectively, in the set I'(n, 0).

We present here without proof also the following two results.

Theorem 2. (a) If n>>1, the complete graph K, with n vertices has the
greatest number of matchings in T'(n). (b) If n=2, K,—e is the unique second
greatest graph in the same set. (¢) If n>4, K,—e, —e, is the unique third grea-
test graph in the same set with e, and e, being non-incident edges of K,. (d)
If n=3, the third greatest matching equivalence class in T'(3) is {P,+P,, P,}.
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Theorem 3. (@) If a>1 and b>1, the complete bipartite graph K, ,
has the greatest number of matchings in B(a, b). (b) If a>=2 and b>=2 then
K, ,—e is the unique second greatest graph in the same set. (c) If a>>2, b>2,
K, ,—e —e, is the unique third greatest graph in the same set, where e, and e,
are non-incident edges. (d) If a=2 and b= 1, the second and third greatest mat-
ching equivalence classes are {K,,—e, K, , .} and {K, —e ~e,, K, , ,—e,
K,_,, .}, respectively.

We proceed now to determine the unicyclic and bicyclic graphs with grea-
test number of matchings. For this purpose we shall formulate three auxiliay
results.

Lemma 3. G(r, s) H>G+H.

The above statement is a special case of Lemma 1. Its consequence is
that for every graph GE&vy (n, ¢) there exists a connected graph G,Cvy(n, ¢),
such that G,>G.

Lemma 4. Let F be a forest with a vertices and G an arbitrary graph.
Let v, and v, be vertices of G and F, respectively. Then G(r, 1)P,>G(r, s) F.

Proof. Applying eq. (1) to the edge e,, of G(r, s) F one gets

PG, ) F, K)=p(G+F, k)+p(G—v)+(F—v), k- 1).
Similary,
p(G(r, )P, K)=p(G+P,, k) +p((G—V)+Poy, kK~ 1)

From Theorem 1, G+P,>G+F and (G—v,)+P,_,>(G—v,)+ (F—v,) and
Lemma 4 follows.

Lemma 5. Let G be an arbitrary graph and let v, and v, be its two
adjacent vertices. Then G (e,,|a)>G (r, 1) P,.

Proof. Let us for brevity denote G (e, |a) by H. Note that
H_ele_eas=(G_ers)‘;‘Pa; H—elr_va_v.r:(G_vs):"Pa—l;

H_vl—vr—easz(G-vr)""Pa—l
and
H-v, —v,—v,—v,=(G—v,—Vv)+P,_,.

Then a repeated application of eq. (1) gives
p(G(r’ l)Pa’ k)=P((G_.ers)';'Pa’ k)+p((G—vr_vs)‘;‘Pa’ k— 1)+
+p((G_vr)""Pa—l’ k- 1)

P(H, k)=p(G—€,)+Ps k)+p(G=V)+Puys k= 1)+
+P(G=V)+Poeys k= 1)+ p(G=¥,~ 1)+ Pymsy k—2).
Now, since G—v,—v, is a subgraph of G—v, we have further
PUG—V) Py k= 1)+ p(G—,~ V) i Py_yy k—2)>
>p(G=¥,~V) i Payy k= 1) +p(G=¥,—¥) + Py, k—2)~
=p((G—v,—v)+P, k—1).
Therefore, p(G(r, 1)P,, k)<p(G(e,,|a), k).

and
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A consequence of Lemmas 4 and 5 is that for every graph GEy (n, ¢), ¢>0,
there exists a graph G,&vy(n, ¢) without vertices of degree one, such that
G, >G. Accordingly, from Lemmas 3 —35 it follows that the greatest matching
equivalence class of ¥y (m, c), ¢>0, possesses elements which are connected
graphs without vertices of degree one.

Theorem 4. (a) If n=3, the cycle C, has the greatest number of mat-
chings in the set y(n, 1). (b) If n=35, the second greatest matching equivalence
class of the same set is {C,_,(1, D)P,, C,(1, DP,_,}. (©) If n=1, the third
greatest matching equivalence class of the same set is {C,_,(1,1)P,, Cs4(1,1) P,_¢}.

Remark 1. The matching equivalence classes under (b) and (c) contain
a single graph for n=6 and n= 10, respectively.

Remark 2. If n=4, the second and third greatest classes are {C; (1,1) P}
and {C,+P,, C,}, respectively. If n=5 and n=6, then the third greatest clas-
ces are {Ps+e,} and {C,(1,1)P,, C5(1,1)P,}, respectively.

First we prove two preliminary results.

Lemma 6.

Co>>Coy (L) Py~C (L) Py > Cy (L) Pe~C (1,1) Py > C (L1 Py
for all other values of j.
Proof. Provided that 0<j<<n—3, one deduces from (1)

P(Coy (L) Py, k) =p (P K)+P(Py+ Payezs k—1).
It is proved in [5] that
Pn>P2 ".'Pn—2>P4';'Pn—4>Pj'.*'Pn—]

j=13,5,6,7....

for

Therefore p(P;+P,—;_,, k— 1) reaches its maximal, second maximal and third
maximal value for j=0, j=2 or n—4 and j=4 or n—6, respectively.

Lemma 7. Let 1<s<n. Then
Ca(L,1) Py y =P, (1,1) C, (2,1) P, > P, (1,1) C, (5, 1) Py
for all values of n, a, b.

Proof. Application of (1) gives
P(Cy(L,1)Pauy, k)=p(Py+ C,(1,1) Py, K) +
+P(Py_y+Ppogeps k= 1)+ p(Pyey + Py +Ppy, k—=2)
P(P,(1,1) C\(2,1) Py, k) =p (Py+C, (1,1) Py, k) +
+P(Pyy+ Py, k= 1)

and

from which the left relation is evident.
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Let s7#1. Then according to our labeling, in C, there are s—2 vertices
between v, and v,. Then

PP (L)) Cy(s, 1) Py, k)=p (P, 4 C, (1,1) P,, k) +
FP(Pat Py 4Py iy k~1)+p(Pyey 4Py +P,_, 1P, ,, k—2).
The number p (P,(1,1) C, (s, 1) Py, k) is maximal if
P(Pocy+Pyey 3Py 1P,y k—2)

is maximal. From Theorem 1 we see that this will occur when s=2 or S=n,
i. e. when the vertices v, and v, are adjacent. This proves the right relation
of Lemma 7 for ss£1. From

P(Pa(1,1) Cy (2,1) Py, k) =p (Py+ Cy (1) Pyy k) +p (Pypey 4Pt geyy k= 1)
and
p(Po(L1)C, (1,1) Py, k)=p (P, +C, (1,1) Pyy k) +p Py y + P i Py k= 1)
follows the validity of the same relation for s=1.

Proof of Theorem 4. In every unicyclic graph G with n vertices there
exists an edge e,, such G—e¢, and G—v,—v, are forests with n and n— 2 verti-
ces, respectively. By (1) and Theorem 1, the graph G will be greatest if
G-e,=P, and G—v,—v,=P,_,. It is easily seen that the above identities are
fulfilled only in the case of the cycle C,. This proves statement (a).

From Lemmas 3 —5 it follows that the greatest unicyclic graph with »
vertices (wich is not C,) must be of the form C.,;(LL1)P; (j#0). Lemma 6
guarantees that the greatest graphs in this class are C,(1,1) P,_, and C, -, (LY)P,
Statement (b) follows.

According to Lemmas 3—5, the third greatest unicyclic graphs with »
vertices must be ot the type

Cia(L1)P, (a#0, a2, n—a+#4)
Pr(1,1) Cyyp (s, 1) Py,

or

Lemma 6 proves that among the graphs C,_,(1,1)P, only the pair
Co—s (1,1} P,~C,(1,1) P,_, is to be considered as a canditate for third greatest
unicyclic graphs. From Lemmas 6 and 7 we know that C,_,(L,LD)P, >
>P,(1,1)C,_,—p (s, 1) P, whenever a+b>2. Lemma 7 also shows that a graph
of the type P,(1,1)C,_,_,(s, 1) P, can be greatest only if s=2 or (what is the
same) s=n.

Let v;(n, 1) denote the third greatest matching equivalence class of v (n, 1).
If v,(n, 1) exists, then according to the above consideration it must be a sub-
set of

{Cas (L) Py Co(LYP,_g, P, (1,1)C,_, (2,1) Py},

It is now easy to show that Cy(1,1)P,_, is, but P, (1,1) C,_,2,DHP, is
not matching equivalent with C,_,(1,1)P,. Moreover it is

Cae (LD P>P (L) C,_, (2,1) P,
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Namely,
P(Coss (L) Py, k)=p(P,, K)+p(PyiPy_qy k=1)+P(PiP,_g k—2)
while
pP,(L,D)C,_, )P, k)=p(P,, K)+p(Py+P,_;, k—1)+p(P,+P,_4 k—2).

Statement (c) is proved.

Theorem 4 is thus proved. In addition we note that C, has greatest
number of matchings in I'(n, 1). This result follows from theorem 4a and the
fact that by Lemma 2 every graph GE&y(m, 1), m<n is matching equivalent
with the graph GiP,+--- 1P, Sy(m, 1).

Theorem 5. If n<9, the unique graphs with the greatest number of
matchings in the set I'(n, 2) are those presented in Fig. 3. If n>=10, there exists
no greatest matching equivalence class in I'(n, 2), but two maximal ones:

Lo(n, 2)={Q (4 2, n-2)}
Ly(n, 2)={C,(1,1) P,_4(n—8,1) C,}.

S T 13 ) &<

= n=8 n=9

and

n-8
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0(4.2, n-2 ) C4(1.1 )Pn_a (n-8’1)C4

Fig. 3

Before proving Theorem 5 we shall formulate the Lemmas §—10.
Lemma 8. C,-C,_,>C;-C,_;, for all values of j=3, 5, 6, ....

Proof will be performed by induction on the total number n of vertices
of C;-C,_;,,. For n=5 and 6 there exists only one graph of this type and
lemma is trivially true. Lemma 8 can be also easily verified for n=7. Supose
then that the lemma holds for graphs C;-C,_ji, forall m=7,8,..., n—1

Now,

p(CJ C”—i+l’ k)=p(P1 (1’1) Cj(l51)Pn—j_.1’ k)+

+p(Cj(l’1)Pn—j—2’ k— 1)=p(P1 (1,1) Cj(191)Pn—j—2, k)+
(P (L)LY P, ;5 k=1)+p(C; (L) Py, k= 1)+
+p(C;(1,1)P,_;_4 k—2)=p(C;-C,_;, k) +p(C;-C, k-1).

—j—1
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According to the induction hypothesis, p(C;-C,_;, k) and p(C;-C,_;_, k—1)
are maximal for j=4. Then also p(C;-C,_;,, k) will be maximal for j=4.

Lemma 9. 04, 2, n—2)>Q(a, b, ¢) for all values of a, b and c,
provided that a+b+c—4=n.

Proof. Let e, be the edge between the vertices v, (P) and v,(P) of
the graph Q(a, b, c¢). Then

Q(a, b, c)—e,=Coyp_, (LDP _,
Q(aa ba C)——Vl (Pc)_vz(Ps)ZPa+c——4(a— I’I)Pb—Z'

and

Consequently,

p(Q(a, b, ¢), K)=p(Corp_, (LDP._5, k) +P(Poy_s(@a—1L,1)Py_,, k—1).
Theorem 1 implies that p(P,,. ,(a—1,1)P,_,, k—1) is maximal if
b—2=0. According to Lemma 6, p(C,,,—, (1,1)P._,, k) is maximal if a+b—
—2=4. Therefrom we conclude that Q(a, b, ¢) is maximal for a=4, b=2
and c=n-2.
Lemma 10.
c(HP,_,(n-8,1)C, >C,(L,1)P,_, ,(n—a—>b, 1)C,

for all values of a, b and n.
This results can be deduced from similar arguments as used in the proof
of Lemma 6.

Proof of Theorem 5. Because of Lemma 2 it is sufficient to con-
sider graphs from vy (n, 2).

From the Lemmas 3 —5 follows that if greatest graphs exist in vy (n, 2),
then they must be of the form Q(a, b, ¢)(a+b+c=n—4) or C,(1,1) P (c, 1) C,
(@a+b+c=n) or C,-Cy(a+b=n+1). Lemmas 8—10 reduce the candidates for
greatest graphs to the following tree: Q (4,2, n-2), C,(1,1)P,_3(n—38, 1)C,
and C,-C,_,. For n=4, 5, 6 and 7, Theorem 5 can be verified by direct
calculation.

We show now that
04, 2, n-2)>C;-C,_,

C,(L))P,_3(n-8,1)C;>>C,-C,_,
for all n>>8. This follows immediately from the fact that
p(Q#, 2, n=2), k)=p(P,, k)+2 p(P,+P,_p k—~1)+
+p(Ppeys k=2)
p(C(LD)P,_(n-8,1)C,, k)=p(P,, k)+
+2 p(PyiPy_yy k=1)+p(P,+Py+Ppy, k—2)

and

and .
P(C4'C -39 k)=p(Pm k)+p(P2+P,,_4, k- 1)+

+p(P3+'-P,,_5, k—1).
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Consequently, in the set I'(n, 2)\{Q 4, 2, n—2), C,(1,1)P,_,(n—8,1)C,}
there cannot exist graphs G such that G >Q(4, 2, n—2) and/or G>
>C,(1,1)P,_4(n—8,1) C,. Therefore, the greatest graphs in I'(n, 2) are either
Q@4,2,n-2) or C,(1,1)P,_,(n—8, 1) or both, provided that they are compa-
rable (with respect to the relation }>). If the above two graphs are not com-
parable, then they will belong to maximal, but not greatest matching equiva-
lence classes I'; (n, 2) and T',(n, 2).

We see from the previous expressions that Q (4, 2, n—2) and C,(1,1)P,_,
(n—-38, 1)C, are comparable if and only if P,_5 and P,+P,+P,_, are compa-
rable.

The graphs P,_ and P, P, P, , are comparable for n=8 and n=9,
viz. P,+P,>>P, and P,>~P,1P,{P,. Accordingly, the greatest bicyclic graphs
with eight and nine vertices are C,(1,1)C, and Q (4, 2, 7), respectively.

For n>10 the graphs P,_; and P,{P,:P, , are mutually incomparable.
This can be seen from

p(P,_, )=n—-6>p(P,+P,3P, ¢ 1)=n-1
and ‘ .
PP, 5 (n—4)2)=0<p(P,+P,iP, 4 (n—-4)/2)=1

if n is even, or
p(P,_5, (n—=5)/2)=1<p(P,+P,+P, 4 (n—5)/2)=(n—-T)/2

if n is odd.

The uniqueness of the element in the classes I';(n, 2) and Ty (n, 2) is
guaranteed by the Lemmas 3—35 and 8—10.

* *
*

As we have seen, the graphs which are greatest or maximal with respect
to the relation > are in a certain sense ,,unexpected*. The search for maxi-
mal graphs in the sets y(n, ¢) for ¢>2 will be a rather difficult task.
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