GRAPHS WITH GREATEST NUMBER OF MATCHINGS

Ivan Gutman

Communicated April 6, 1979

In the present paper finite graphs without loops and multiple edges will be considered. If not stated otherwise, the vertices of a graph G will be labeled by $v_j = v_j(G)$, $j = 1, 2, \ldots$. The egde connecting the vertices v_r and v_s is denoted by e_{rs} .

If G and H are isomorphis, we shall write G = H. The direct sum (or union) of graphs G_1 and G_2 is denoted by $G_1 + G_2$.

Notation and terminology not introduced here follows the book [8].

The path and the cycle with n vertices will be denoted by P_n and C_n , respectively. P_1 is just an isolated vertex. The vertices of P_n and C_n will be labeled so that v_j and v_{j+1} are adjacent (j=1, 2, ..., n-1). Thus $P_n + e_{1n} = C_n$ $(n \ge 3)$.

Let G and H be two disjoint graphs. Then the graph G(r, s) H is obtained by connecting the vertices $v_r(G)$ and $v_s(H)$ by a new edge. The graph $P_a(1, 1)$ C(s, 1) P_b is constructed by joining the vertices v_1 and v_s of the cycle C_n to the terminal vertices $v_1(P_a)$ and $v_1(P_b)$ of P_a and P_b , respectively. The graph $C_a(1, 1)$ $P_n(n, 1)$ C_b is constructed by joining the terminal vertices v_1 and v_n of P_n to (arbitrary) vertices $v_1(C_a)$ and $v_1(C_b)$ of C_a and C_b , respectively (see Fig. 1).

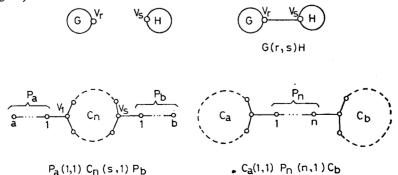


Fig. 1

Let v_r and v_s be two adjacent vertices of a graph G with n vertices. The substitution of the edge e_{rs} by a path with a vertices yields the graph $G(e_{rs} \mid a)$ with n+a vertices.

The dot product $C_a \cdot C_b$ of the cycles C_a and C_b is obtained by identifying a vertex of C_a with a vertex of C_b .

Let P_a , P_b and P_c be three disjoint paths $(a \ge 3, b \ge 3, c \ge 3)$. By identifying the vertices $v_1(P_a)$, $v_1(P_b)$ and $v_1(P_c)$ and by simultaneous identifying the vertices $v_a(P_a)$, $v_b(P_b)$ and $v_c(P_c)$ one obtains a bicyclic graph Q(a, b, c) with a+b+c-4 vertices (see Fig. 2).

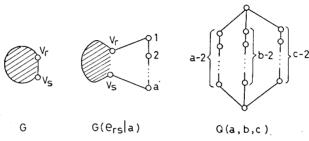


Fig. 2

Definition 1. A subgraph of G induced by k independent edges is called a k-matching of G. The number of k-matchings in G is denoted by p(G, k).

It is both convenient and consequent to define p(G, 0) = 1 for all graphs G.

The numbers p(G, k) play an important role in various chemical [1, 5, 6, 7, 10] and physical [9] theories. They have been subject also to several mathematical investigation. [2, 3, 4, 11]. We mention here only the following results.

- 1. For every graph G there exists a number K = K(G), such that [11] $p(G, 1) \le p(G, 2) \le \cdots \le p(G, K) \ge p(G, K+1) \ge p(G, K+2) \ge \cdots$
 - 2. The matching polynomial of a graph G,

$$\alpha(G) = \sum_{k=0}^{[n/2]} (-1)^k p(G, k) \lambda^{n-2k}$$

coincides with the characteristic polynomial of this graph if and only if G is a forest [4].

- 3. All the zeros of $\alpha(G)$ are real [3,9].
- 4. The recurrence relation [2,4]

(1)
$$p(G, k) = p(G - e_{rs}, k) + p(G - v_r - v_s, k - 1)$$

will be frequently used later.

Since P_1 has no edges, $p(G + P_1, k) = p(G, k)$.

We introduce now a quasi-ordering of graphs according to the number of matchings in them.

Definition 2. For two graphs G and H we write G > H if $p(G, k) \ge p(H, k)$ for all $k = 1, 2, \ldots$ If G > H and H > G, then we call the graphs G and H matching equivalent and write $G \sim H$.

Combining Definitions 1 and 2 one immediately arrives to the following two conclusions.

Lemma 1. If H is a subgraph of G, then G > H. Moreover if the edge set of H is a proper subset of the edge set of G, then G and H are not matching equivalent.

Lemma 2. $G+P_1 \sim G$.

Let γ be a set of graphs. Then the relation \sim is an equivalence relation in this set. The corresponding equivalence classes will be called the matching equivalence classes (of the set γ). Clearly, the quasiordering > induces a partial ordering in γ/\sim .

Let $\gamma_1, \gamma_2, \ldots$ be the matching equivalence classes of γ . As usual, a class γ_i is called the greatest class if $\gamma_i > \gamma_j$ for all $j = 1, 2, \ldots$. This maximal class (provided it exists) will be denoted by γ_1 . The graphs from γ_1 will be said to have greatest number of matchings in the set γ . When ambiguities are avoided, the elements of γ_1 will be simply called the greatest graphs in γ .

 γ_2 is the second greatest class in γ (and its elements are the second greatest graphs in γ) if $\gamma_2 > \gamma_i$ for all $i = 2, 3, \ldots$

The third greatest, fourth greatest etc. matching equivalence classes and the third greatest, fourth greatest etc. graphs are determined analogously.

Of course, greatest classes in a set of graphs need not exist at all. The smallest pair of graphs which are mutually incomparable with respect to the elation \geq are C_3 and $P_2 + P_2$.

We denote by $\gamma(n)$ the set of all graphs with n vertices and by $\beta(a, b)$ ne set of all bipartite graphs with a+b vertices. Further, $\Gamma(n) = \bigcup_{j=1}^{n} \gamma(j)$ and

 $(a, b) = \bigcup_{i=1}^{a} \bigcup_{j=1}^{b} \beta(i, j)$. The set of all graphs with n vertices and cyclomatic

imber c is
$$\gamma(n, c)$$
 and $\Gamma(n, c) = \bigcup_{j=1}^{n} \gamma(j, c)$.

In a previous paper [5] it was established that the unique greatest and e unique second greatest graphs in the set $\gamma(n, 0)$ are P_n and $P_{n-2}(3, 1)P_2$, spectively. This result can be slighty improved as follows.

Theorem 1. P_n and $P_{n-2}(3, 1)P_2$ are the unique greatest and the unique second greatest graphs, respectively, in the set $\Gamma(n, 0)$.

We present here without proof also the following two results.

Theorem 2. (a) If $n \ge 1$, the complete graph K_n with n vertices has the greatest number of matchings in $\Gamma(n)$. (b) If $n \ge 2$, $K_n - e$ is the unique second greatest graph in the same set. (c) If $n \ge 4$, $K_n - e_1 - e_2$ is the unique third greatest graph in the same set with e_1 and e_2 being non-incident edges of K_n . (d) If n = 3, the third greatest matching equivalence class in $\Gamma(3)$ is $\{P_2 \dotplus P_1, P_2\}$.

Theorem 3. (a) If $a \ge 1$ and $b \ge 1$, the complete bipartite graph $K_{a,b}$ has the greatest number of matchings in B(a, b). (b) If $a \ge 2$ and $b \ge 2$ then $K_{a,b}-e$ is the unique second greatest graph in the same set. (c) If $a \ge 2$, $b \ge 2$, $K_{a,b}-e_1-e_2$ is the unique third greatest graph in the same set, where e_1 and e_2 are non-incident edges. (d) If $a \ge 2$ and b = 1, the second and third greatest matching equivalence classes are $\{K_{a,1}-e, K_{a-1,1}\}$ and $\{K_{a,1}-e_1-e_2, K_{a-1,1}-e, K_{a-2,1}\}$, respectively.

We proceed now to determine the unicyclic and bicyclic graphs with greatest number of matchings. For this purpose we shall formulate three auxiliay results.

Lemma 3. G(r, s) H > G + H.

The above statement is a special case of Lemma 1. Its consequence is that for every graph $G \in \gamma(n, c)$ there exists a connected graph $G_1 \in \gamma(n, c)$, such that $G_1 > G$.

Lemma 4. Let F be a forest with a vertices and G an arbitrary graph. Let v_r and v_s be vertices of G and F, respectively. Then $G(r, 1)P_a > G(r, s)F$.

Proof. Applying eq. (1) to the edge e_{rs} of G(r, s) F one gets

$$p(G(r, s) F, k) = p(G + F, k) + p((G - v_s) + (F - v_s), k - 1).$$

Similary,

$$p(G(r, 1)P_a, k) = p(G + P_a, k) + p((G - v_r) + P_{a-1}, k-1).$$

From Theorem 1, $G + P_a > G + F$ and $(G - v_r) + P_{a-1} > (G - v_r) + (F - v_s)$ and Lemma 4 follows.

Lemma 5. Let G be an arbitrary graph and let v_r and v_s be its two adjacent vertices. Then $G(e_{rs}|a) > G(r, 1) P_a$.

Proof. Let us for brevity denote $G(e_{rs}|a)$ by H. Note that

$$\begin{split} H - e_{1e} - e_{as} &= (G - e_{rs}) \dotplus P_a; \quad H - e_{1r} - v_a - v_s = (G - v_s) \dotplus P_{a-1}; \\ H - v_1 - v_r - e_{as} &= (G - v_r) \dotplus P_{a-1} \end{split}$$

and

$$H - v_1 - v_r - v_a - v_s = (G - v_r - v_s) + P_{a-2}$$
.

Then a repeated application of eq. (1) gives

$$p(G(r, 1)P_a, k) = p((G - e_{rs}) + P_a, k) + p((G - v_r - v_s) + P_a, k - 1) + p((G - v_r) + P_{a-1}, k - 1)$$

and

$$p(H, k) = p((G - e_{rs}) + P_a, k) + p((G - v_s) + P_{a-1}, k - 1) + p((G - v_s) + P_{a-1}, k - 1) + p((G - v_s) + P_{a-1}, k - 2).$$

Now, since $G - v_r - v_s$ is a subgraph of $G - v_s$, we have further

$$p((G-v_s) \dotplus P_{a-1}, k-1) + p((G-v_r-v_s) \dotplus P_{a-2}, k-2) \geqslant p(G-v_r-v_s) \dotplus P_{a-1}, k-1) + p((G-v_r-v_s) \dotplus P_{a-2}, k-2) = p((G-v_r-v_s) \dotplus P_{a-1}, k-1).$$

Therefore, $p(G(r, 1)P_a, k) \leq p(G(e_{rs}|a), k)$.

A consequence of Lemmas 4 and 5 is that for every graph $G \in \gamma(n, c)$, c > 0, there exists a graph $G_1 \in \gamma(n, c)$ without vertices of degree one, such that $G_1 > G$. Accordingly, from Lemmas 3-5 it follows that the greatest matching equivalence class of $\gamma(n, c)$, c > 0, possesses elements which are connected graphs without vertices of degree one.

Theorem 4. (a) If $n \ge 3$, the cycle C_n has the greatest number of matchings in the set $\gamma(n, 1)$. (b) If $n \ge 5$, the second greatest matching equivalence class of the same set is $\{C_{n-2}(1, 1)P_2, C_4(1, 1)P_{n-4}\}$. (c) If $n \ge 7$, the third greatest matching equivalence class of the same set is $\{C_{n-4}(1, 1)P_4, C_6(1, 1)P_{n-6}\}$.

Remark 1. The matching equivalence classes under (b) and (c) contain a single graph for n=6 and n=10, respectively.

Remark 2. If n=4, the second and third greatest classes are $\{C_3(1,1)P_1\}$ and $\{C_3 + P_1, C_3\}$, respectively. If n=5 and n=6, then the third greatest clasces are $\{P_5 + e_{24}\}$ and $\{C_3(1,1)P_3, C_5(1,1)P_1\}$, respectively.

First we prove two preliminary results.

Lemma 6.

$$C_n > C_{n-2}(1,1)P_2 \sim C_4(1,1)P_{n-4} > C_{n-4}(1,1)P_4 \sim C_6(1,1)P_{n-6} > C_{n-j}(1,1)P_j$$
 for all other values of j.

Proof. Provided that $0 \le j \le n-3$, one deduces from (1)

$$p(C_{n-j}(1,1)P_j, k) = p(P_n, k) + p(P_j + P_{n-j-2}, k-1).$$

It is proved in [5] that

for

and

$$P_n > P_2 + P_{n-2} > P_4 + P_{n-4} > P_j + P_{n-j}$$

 $i = 1, 3, 5, 6, 7, \dots$

Therefore $p(P_j + P_{n-j-2}, k-1)$ reaches its maximal, second maximal and third maximal value for j=0, j=2 or n-4 and j=4 or n-6, respectively.

Lemma 7. Let $1 \leq s \leq n$. Then

$$C_n(1,1)P_{a+b} > P_a(1,1)C_n(2,1)P_b > P_a(1,1)C_n(s, 1)P_b$$

for all values of n, a, b.

Proof. Application of (1) gives

$$p(C_n(1,1)P_{a+b}, k) = p(P_b \dotplus C_n(1,1)P_a, k) +$$

$$+ p(P_{b-1} \dotplus P_{n-a-1}, k-1) + p(P_{b-1} \dotplus P_{a-1} \dotplus P_{n-2}, k-2)$$

$$p(P_a(1,1)C_n(2,1)P_b, k) = p(P_b \dotplus C_n(1,1)P_a, k) +$$

$$+ p(P_{b-1} \dotplus P_{n-a-1}, k-1)$$

from which the left relation is evident.

72 I. Gutman

Let $s \neq 1$. Then according to our labeling, in C_n there are s-2 vertices between v_1 and v_s . Then

$$p(P_a(1,1) C_n(s, 1) P_b, k) = p(P_b \dotplus C_n(1,1) P_a, k) +$$

$$+ p(P_a \dotplus P_{b-1} \dotplus P_{n-1}, k-1) + p(P_{a-1} \dotplus P_{b-1} \dotplus P_{s-2} \dotplus P_{n-s}, k-2).$$

The number $p(P_a(1,1) C_n(s, 1) P_b, k)$ is maximal if

$$p(P_{a-1} + P_{b-1} + P_{s-2} + P_{n-s}, k-2)$$

is maximal. From Theorem 1 we see that this will occur when s=2 or s=n, i. e. when the vertices v_1 and v_s are adjacent. This proves the right relation of Lemma 7 for $s \neq 1$. From

$$p(P_a(1,1) C_n(2,1) P_b, k) = p(P_b + C_n(1,1) P_a, k) + p(P_{b-1} + P_{n+a-1}, k-1)$$

and

$$p(P_a(1,1) C_n(1,1) P_b, k) = p(P_b + C_n(1,1) P_a, k) + p(P_{b-1} + P_{n-1} + P_a, k-1)$$
 follows the validity of the same relation for $s = 1$.

Proof of Theorem 4. In every unicyclic graph G with n vertices there exists an edge e_{rs} such $G-e_{rs}$ and $G-v_r-v_s$ are forests with n and n-2 vertices, respectively. By (1) and Theorem 1, the graph G will be greatest if $G-e_{rs}=P_n$ and $G-v_r-v_s=P_{n-2}$. It is easily seen that the above identities are fulfilled only in the case of the cycle C_n . This proves statement (a).

From Lemmas 3-5 it follows that the greatest unicyclic graph with n vertices (wich is not C_n) must be of the form $C_{n-j}(1,1)P_j$ $(j\neq 0)$. Lemma 6 guarantees that the greatest graphs in this class are $C_4(1,1)P_{n-4}$ and $C_{n-2}(1,1)P_2$. Statement (b) follows.

According to Lemmas 3-5, the third greatest unicyclic graphs with n vertices must be of the type

$$C_{n-a}(1,1)P_a \ (a \neq 0, \ a \neq 2, \ n-a \neq 4)$$

or

$$P_a(1,1) C_{n-a-b}(s, 1) P_b$$
.

Lemma 6 proves that among the graphs $C_{n-a}(1,1)P_a$ only the pair $C_{n-4}(1,1)P_4 \sim C_6(1,1)P_{n-6}$ is to be considered as a canditate for third greatest unicyclic graphs. From Lemmas 6 and 7 we know that $C_{n-4}(1,1)P_4 > P_a(1,1)C_{n-a-b}(s,1)P_b$ whenever a+b>2. Lemma 7 also shows that a graph of the type $P_a(1,1)C_{n-a-b}(s,1)P_b$ can be greatest only if s=2 or (what is the same) s=n.

Let $\gamma_3(n, 1)$ denote the third greatest matching equivalence class of $\gamma(n, 1)$. If $\gamma_3(n, 1)$ exists, then according to the above consideration it must be a subset of

$$\{C_{n-4}(1,1)P_4, C_6(1,1)P_{n-6}, P_1(1,1)C_{n-2}(2,1)P_1\}.$$

It is now easy to show that $C_6(1,1)P_{n-6}$ is, but $P_1(1,1)C_{n-2}(2,1)P_1$ is not matching equivalent with $C_{n-4}(1,1)P_4$. Moreover it is

$$C_{n-4}(1,1)P_4 > P_1(1,1)C_{n-2}(2,1)P_1$$

Namely,

$$p(C_{n-4}(1,1)P_4, k) = p(P_n, k) + p(P_4 + P_{n-7}, k-1) + p(P_4 + P_{n-8}, k-2)$$

while

$$p(P_1(1,1)C_{n-2}(2,1)P_1, k) = p(P_n, k) + p(P_3 + P_{n-2}, k-1) + p(P_2 + P_{n-8}, k-2).$$

Statement (c) is proved.

Theorem 4 is thus proved. In addition we note that C_n has greatest number of matchings in $\Gamma(n, 1)$. This result follows from theorem 4a and the fact that by Lemma 2 every graph $G \in \gamma(m, 1)$, m < n is matching equivalent with the graph $G \dotplus P_1 \dotplus \cdots \dotplus P_1 \in \gamma(n, 1)$.

Theorem 5. If $n \le 9$, the unique graphs with the greatest number of matchings in the set $\Gamma(n, 2)$ are those presented in Fig. 3. If $n \ge 10$, there exists no greatest matching equivalence class in $\Gamma(n, 2)$, but two maximal ones:

$$\Gamma_a(n, 2) = \{Q(4, 2, n-2)\}$$

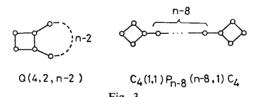
and

$$\Gamma_b(n, 2) = \{C_4(1,1)P_{n-8}(n-8,1)C_4\}.$$

$$\Gamma_b(n, 2) = \{C_4(1,1)P_{n-8}(n-8,1)C_4\}.$$

$$\Gamma_b(n, 2) = \{C_4(1,1)P_{n-8}(n-8,1)C_4\}.$$

$$\Gamma_b(n, 2) = \{C_4(1,1)P_{n-8}(n-8,1)C_4\}.$$



Before proving Theorem 5 we shall formulate the Lemmas 8—10.

Lemma 8. $C_4 \cdot C_{n-3} > C_j \cdot C_{n-j+1}$ for all values of $j=3, 5, 6, \ldots$

Proof will be performed by induction on the total number n of vertices of $C_j \cdot C_{n-j+1}$. For n=5 and 6 there exists only one graph of this type and lemma is trivially true. Lemma 8 can be also easily verified for n=7. Supose then that the lemma holds for graphs $C_j \cdot C_{m-j+1}$ for all $m=7, 8, \ldots, n-1$.

Now,

$$p(C_{j} \cdot C_{n-j+1}, k) = p(P_{1}(1,1) C_{j}(1,1) P_{n-j-1}, k) +$$

$$+ p(C_{j}(1,1) P_{n-j-2}, k-1) = p(P_{1}(1,1) C_{j}(1,1) P_{n-j-2}, k) +$$

$$+ p(P_{1}(1,1) C_{j}(1,1) P_{n-j-3}, k-1) + p(C_{j}(1,1) P_{n-j-3}, k-1) +$$

$$+ p(C_{j}(1,1) P_{n-j-4}, k-2) = p(C_{j} \cdot C_{n-j}, k) + p(C_{j} \cdot C_{n-j-1}, k-1).$$

According to the induction hypothesis, $p(C_j \cdot C_{n-j}, k)$ and $p(C_j \cdot C_{n-j-1}, k-1)$ are maximal for j=4. Then also $p(C_j \cdot C_{n-j+1}, k)$ will be maximal for j=4.

Lemma 9. Q(4, 2, n-2) > Q(a, b, c) for all values of a, b and c, provided that a+b+c-4=n.

Proof. Let e_{12} be the edge between the vertices $v_1(P_c)$ and $v_2(P_c)$ of the graph Q(a, b, c). Then

$$Q(a, b, c) - e_{12} = C_{a+b-2}(1,1)P_{c-2}$$

and

$$Q(a, b, c) - v_1(P_c) - v_2(P_s) = P_{a+c-4}(a-1,1)P_{b-2}$$

Consequently,

$$p(Q(a, b, c), k) = p(C_{a+b-2}(1,1)P_{c-2}, k) + p(P_{a+c-4}(a-1,1)P_{b-2}, k-1).$$

Theorem 1 implies that $p(P_{a+c-4}(a-1,1)P_{b-2}, k-1)$ is maximal if b-2=0. According to Lemma 6, $p(C_{a+b-2}(1,1)P_{c-2}, k)$ is maximal if a+b-2=4. Therefrom we conclude that Q(a, b, c) is maximal for a=4, b=2 and c=n-2.

Lemma 10.

$$C_4(1,1)P_{n-8}(n-8,1)C_4 > C_a(1,1)P_{n-a-b}(n-a-b,1)C_b$$

for all values of a, b and n.

This results can be deduced from similar arguments as used in the proof of Lemma 6.

Proof of Theorem 5. Because of Lemma 2 it is sufficient to consider graphs from $\gamma(n, 2)$.

From the Lemmas 3-5 follows that if greatest graphs exist in $\gamma(n, 2)$, then they must be of the form Q(a, b, c)(a+b+c=n-4) or $C_a(1,1)P_c(c, 1)C_b(a+b+c=n)$ or $C_a \cdot C_b(a+b=n+1)$. Lemmas 8-10 reduce the candidates for greatest graphs to the following tree: Q(4, 2, n-2), $C_4(1,1)P_{n-8}(n-8, 1)C_4$ and $C_4 \cdot C_{n-3}$. For n=4, 5, 6 and 7, Theorem 5 can be verified by direct calculation.

We show now that

$$Q(4, 2, n-2) > C_4 \cdot C_{n-3}$$

and

and

$$C_4(1,1)P_{n-8}(n-8,1)C_4 > C_4 \cdot C_{n-3}$$

for all $n \ge 8$. This follows immediately from the fact that

$$p(Q(4, 2, n-2), k) = p(P_n, k) + 2 p(P_2 + P_{n-4}, k-1) + p(P_{n-5}, k-2)$$

$$p(C_4(1,1)P_{n-8}(n-8,1)C_4, k) = p(P_n, k) + p(P_2 + P_{n-4}, k-1) + p(P_2 + P_2 + P_{n-8}, k-2)$$

$$p(C_4 \cdot C_{n-3}, k) = p(P_n, k) + p(P_2 + P_{n-4}, k-1) + p(P_2 + P$$

 $+p(P_3+P_{n-5}, k-1).$

Consequently, in the set $\Gamma(n, 2) \setminus \{Q(4, 2, n-2), C_4(1,1)P_{n-8}(n-8,1)C_4\}$ there cannot exist graphs G such that G > Q(4, 2, n-2) and/or $G > C_4(1,1)P_{n-8}(n-8,1)C_4$. Therefore, the greatest graphs in $\Gamma(n, 2)$ are either Q(4, 2, n-2) or $C_4(1,1)P_{n-8}(n-8, 1)$ or both, provided that they are comparable (with respect to the relation >). If the above two graphs are not comparable, then they will belong to maximal, but not greatest matching equivalence classes $\Gamma_a(n, 2)$ and $\Gamma_b(n, 2)$.

We see from the previous expressions that Q(4, 2, n-2) and $C_4(1,1)P_{n-8}(n-8, 1)C_4$ are comparable if and only if P_{n-5} and $P_2+P_2+P_{n-8}$ are comparable.

The graphs P_{n-5} and $P_2 \dotplus P_2 \dotplus P_{n-8}$ are comparable for n=8 and n=9, viz. $P_2 \dotplus P_2 \gt P_3$ and $P_4 \gt P_2 \dotplus P_2 \dotplus P_1$. Accordingly, the greatest bicyclic graphs with eight and nine vertices are $C_4(1,1)$ C_4 and Q(4, 2, 7), respectively.

For $n \ge 10$ the graphs P_{n-5} and $P_2 \dotplus P_2 \dotplus P_{n-8}$ are mutually incomparable. This can be seen from

$$p(P_{n-5}, 1) = n-6 > p(P_2 + P_2 + P_{n-8}, 1) = n-7$$

and

$$p(P_{n-5}, (n-4)/2) = 0 < p(P_2 + P_2 + P_{n-8}, (n-4)/2) = 1$$

if n is even, or

$$p(P_{n-5}, (n-5)/2) = 1 < p(P_2 + P_2 + P_{n-8}, (n-5)/2) = (n-7)/2$$

if n is odd.

The uniqueness of the element in the classes $\Gamma_a(n, 2)$ and $\Gamma_b(n, 2)$ is guaranteed by the Lemmas 3—5 and 8—10.

* *

As we have seen, the graphs which are greatest or maximal with respect to the relation > are in a certain sense "unexpected". The search for maximal graphs in the sets $\gamma(n, c)$ for c > 2 will be a rather difficult task.

Acknowledgment

Drs. Dragoš Cvetković and Slobodan Simić read this paper in manuscript and gave numerous and significant suggestions which improved much its presentation.

REFERENCES

- [1] J. Aihara, A new definition of Dewar-type resonance energy, J. Amer. Chem. Soc. t. 98 1976 pp. 2750-2758.
- [2] E. J. Farrell, An introduction to matching polynomials, J. Comb. Theory B, t. 27 1979 pp. 75—86.
- [3] C. D. Godsil and I. Gutman, On the theory of the matching polynomial, J. Graph Theory, in press.
- [4] I. Gutman, The acyclic polynomial of a graph, Publ. Inst. Math. t. 22 (36) 1977 pp. 63—69.

- [5] I. Gutman, Acyclic systems with extremal Hückel pi-electron energy, Theoret. Chima. Acta t. 45 1977 pp. 79—87.
- [6] I. Gutman, Topological properties of benzenoid systems. And identity for the sextet polynomial, Theoret. Chim. Acta t. 45 1977 pp. 309—315.
- [7] I. Gutman, M. Milun, and N. Trinajstić, Graph theory an molecular orbitals. 19. Non-parametric resonance energies of arbitrary conjugated systems, J. Amer. Chem. Soc. t. 99 1977 pp. 1692-1704.
 - [8] F. Harary, Graph theory, Reading 1969.
- [9] O. J. Heilmann, and E. H. Lieb, Theory of monomer-dimer systems, Commun. Math. Phys. t. 25 1972 pp. 190-232.
- [10] H. Hosoya, Topological index, Bull. Chem. Soc. Japan t. 44 1971 pp. 2332—2339. [11] A. J. Schwenk, On unimodal sequences of graphical invariants, submitted for publication.

Faculty of Science University of Kragujevac 34000 Kraguievac P. O. Box 60