ON THE BROWN - McCOY RADICAL OF GROUP RINGS

N. J. Groenewald

Abstract

We show if R is a simple ring with identity and G a finitely generated torsion free Abelain group, then the group ring RG is Brown-McCoy semisimple. We also prove that RG is Brown-McCoy semisimple if R is Brown-McCoy semisimple and where G is a finitely generated torsion free Abelian group.

Terminologies undefined here will have the same meaning as in [1]. If R is a ring with identity, we denote the Brown-McCoy radical of R by B(R).

Proposition 1. If R is a simple ring with identity and $G = \langle x \rangle$, the infinite cyclic group generated by x, then RG is a principal ideal ring.

Proof. Let A be any ideal in RG. Since R[x] is a subring of RG, $A \cap R[x]$ is an ideal in R[x]. We can pick a nonzero element $a(x) \in A \cap R[x]$ with minimal degree. Since the leading coefficients of all the elements of $A \cap R[x]$ with minimal degree, (say n), together with (0), forms an ideal in R, and R is a simple ring with identity, we can without loss of generality, assume that a(x) is monic. Firstly, we show that $A \cap R[x] = \langle a(x) \rangle$. To this purpose we prove that $a(x) R[x] = R[x] a(x) = \langle a(x) \rangle$. Let $r \in R$, then $(a(x) r - ra(x)) \in$ $\in A \cap R[x]$ and degree (a(x)r - ra(x)) < n. Hence a(x) = ra(x) for every $r \in R$ and consequently a(x)R[x] = R[x]a(x). From this and the definition of $\langle a(x)\rangle$ it follows that $\langle a(x) \rangle = a(x)R[x] = R[x]a(x)$. Let f(x) be an arbitrary element of $A \cap R[x]$ of degree k with leading coefficient β . If n = k, then $[a(x)\beta - f(x)] \in A \cap R[x]$ and degree $(a(x)\beta - f(x)) < n$. Consequently $f(x) = a(x)\beta - f(x)$ $= -a(x)\beta \in a(x)R[x] = \langle a(x)\rangle$. Suppose that every element of $A \cap R[x]$ of degree $k, n \le k \le m$, is an element $\langle a(x) \rangle$, then if f(x) is of degree m+1we have $g(x) = \overline{f}(x) - a(x) \beta x^{m+1-n} \in A \cap R[x]$ with degree $g(x) \le m$. From our assumption there exists $h(x) \in R[x]$ such that g(x) = a(x)h(x) and consequently f(x) = a(x) p(x), where $p(x) = h(x) \beta x^{m+1-n} \in R[x]$. Hence $A \cap R[x] \subseteq \langle a(x) \rangle$. However, since $A \cap R[x]$ is an ideal in R[x] we have $\langle a(x) \rangle \subset \overline{A} \cap R[x]$. Consequently $A \cap R[x] = \langle a(x) \rangle$. We claim that A = a(x)RG = RGa(x) Clearly $a(x)RG\subseteq A$. Next, let $y\in A$, $y\neq 0$. We can write $y=x^{i}f(x)$ for some integer j and $f(x) \in R[x]$. Then $yx^{-j} = f(x) \in A \cap R[x]$. Hence $f(x) \in \langle a(x) \rangle$ and we write f(x) = a(x) k(x) where $k(x) \in R[x]$. Hence $y = f(x) x^j =$ $= a(x) k(x) x^{j} \in a(x) RG$. Therefore, a(x) RG = RGa(x) = A. Thus we have proved that A is a principal ideal in RG, generated by a(x). \Box

Lemma 2. Let R be a simple ring with identity and G an infinite cyclic group. Then B(RG) = (0).

Proof. Let $G = \langle x \rangle$ be the infinite cyclic group generated by x. Suppose now I is the Brown-McCoy radical of RG. From Proposition 1 there exists a monic polynomial a(x) of degree n, say, in $I \cap R[x]$ such that I = a(x)RG = RGa(x). Then $I = \langle a(x) \rangle$ and a(x) is G regular in RG, that is

$$a(x) \in G(a(x)) = \{a(x)y - y + \sum (g_i a(x)h_i - g_i h_i)\}$$

where the summation is over a finite range and y, g_i , $h_i \in RG$. Since a(x)RG = RGa(x) we have $G(a(x)) = F(a(x)) = \{a(x)y - y\}$. Hence there is $s \in RG$, $s \neq 0$, such that a(x)s - a(x) - s = 0. By comparing degrees we see that either degree s = 0 or degree a(x) = 0. If degree s = 0 but degree $a(x) \neq 0$ then, for the coefficient of x^n in a(x)s and a(x) to cancel, we must have s = 1. This is impossible for it will imply 1 = 0. Similarly we can prove that neither degree s = 0 and degree a(x) = 0 nor degree $s \neq 0$ and degree a(x) = 0. Hence s = 0 and hence a(x) = 0. Consequently I = (0), i.e. B(RG) = (0).

Lemma 3. Let R be a ring with identity and G an infinite cyclic group. If B(R) = (0) then B(RG) = (0).

Proof. Since B(R) = (0), it follows from [1], Theorem 7.26 that $\bigcap_{i \in U} M_i = (0)$ where $\{M_i : i \in U\}$ is the family of all the modular maximal ideals in R. Hence for each $i \in U$, R/M_i is a simple ring with identity. Now $RG/M_i(G) \cong (R/M_i)G$ and from Lemma 2 $B(R/M_i(G) = (0))$ for each $i \in U$, $R_i = R_i$. From [1] Theorem 7.27 it now follows that for each $i \in U$, $R_i = R_i$ is a subdirect sum of simple rings with unity. Furthermore, $\bigcap_{i \in U} (M_i G) = (\bigcap_{i \in U} M_i)G = (0)$ and consequently it follows from [1], Theorem 3.9 that RG is isomorphic to a subdirect sum of the rings $R_i = R_i$. Hence RG is isomorphic to a subdirect sum of simple rings with unity and consequently B(RG) = (0).

Theorem 4. If R is a simple ring with identity and G finitely generated torsion free Abelian group, then B(RG) = (0).

Proof. Indeed, since G is a finitely generated torsion free Abelian, then $G \cong C_1 \times C_2 \times \cdots \times C_n$, where C_i is infinite cyclic. But then $RG \cong (RC_1)$ ($C_2 \times \cdots \times C_n$), thus we may apply Lemmas 2 and 3 and induction to complete the proof. \square

Theorem 5. Let R be a ring with identity and G a finitely generated torsion free Abelian group. If B(R) = (0) then B(RG) = (0).

Proof. Put $G = C_1 \times C_2 \times \cdots \times C_n$, C_i infinite cyclic. Then the result follows by Lemma 3 and induction. \square

Corollary 6. Let R be any ring with identity and G a finitely generated torsion free Abelian group. Then $B(RG) \subseteq B(R)G$.

Proof. Consider the isomorphism $[R/B(R)]G \cong RG/B(R)G$. Since for any ring, B(R) is the smallest ideal K of R such that B(R/K) = (0), it follows from Theorem 5. that $B(RG) \subseteq B(R)G$.

REFERENCES

[1] N. H. McCoy, The Theory of Rings, MacMillan, New York, 1965.

ADDRESS

Department of Mathematics, University of Port Elizabeth, Port Elizabeth, South Africa.