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ON RELATIONS BETWEEN LOCAL AND GLOBAL MONOTONY
OF MAPPINGS OF ORDERED SETS

Dusan D. Adamovié

0. Let (S, <) and (7, <(,) be odered sets (partially or totally) and let f
be a mapping of S into T. As usually, we say that the mapping f is increasing
on S if for all x, y=S

x<y = fO<0)
and that it is strictly increasing on S if for x, yeS

x<y = fX)<, S,

and we accept also the corresponding definitions of decreasing and strictly decreasing
mapping. The increasing and decreasing mappings are called monotonic and
strictly increasing or decreasing strictly monotonic mappings ( functions). The
importance of monotonic functions in certain domains is well-known; for
example, in the cases of real functions and real sequences. However, in last
decades the more general types of such functions have been studied very much;
in particular, after the well-known fundamental result of 4. Tarski [1] concerning
fixed points of increasing mappings. Numerous papers are dedicated to various
generalizations of this result and to other applications of increasing and decreasing
mappings of ordered sets.

The subject of this paper is the question under which conditions the
“local monotony”, or the ‘local strict monotony”, i.e. the (strict) monotony
on at least one interval containing x, for any x&S, or some analoguous
property, implies the “global (strict) monotony”, i.e. the (strict) monotony on
the whole set S. In some simple and familiar cases, as in the cases of real
sequence and real function defined on an interval, this implication is intuitively
evident and can easily be rigorously proved; but it is impossible to extend this
intuition to some more complicate cases, as it is not difficult to show by
examples. Our results contained in Theorems 1-3 and in supplementary
statements give different conditions under which a property apparently weaker
implies the monotony, resp. the strict monotony, on the whole domain of the
consiredred function, and establishes that any of these conditions cannot be
omitted or weakened, in a definite sense, and moreover (Theorems 1 and 3)
that a characteristic condition is also necessary for the validity of the implication
in question, all other conditions being unchanged. We add to these general
results a characterization of monotony and of strict monotony of a real function
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defined on an interval (without any other suppositions) in terms of upper and
lower, left and right derivative (Theorem 4), which we deduce from Theorem 1.

We point out that every of Theorems 1—3 and 1’ is really twofold:
namely, it contains two statements condensed in one statement; the first of them
consists of the text and the symbols out of parentheses and in the second one
the text and the symbols in parentheses everywhere replace the corresponding
elements out of them. We note also that, for x, y©S and x<(y, the set [x, y[
i8 defined by

def
[,y [={r: €S N x <1<y},
and similarly the sets Jx, y], 1x, y[ and [x, y] are defined.

1. The following results, as formulated, refer to (strictly) increasing
mappings. From every of them one can obviously, by suitable changes, obtain
the corresponding statement concerning (strictly) decreasing function, and also
the statement in which the increasing function is retained, but otherwise the
left and right sides change their roles.

We start from a characterization of conditional completness of ordered
sets, in some sense ccmparable to the characterization of complete lattice given
by Anne Devis in [2] (as a supplementary result to the cited paper of Tarski).

Theorem 1. Let us suppose that
)] (S, <) is a chain (totally ordered set).
Then the condition

2 [(S, X{) is conditionally complete (that is, every nonempty
subset of S with upper bound has its supremum)

is necessary and sufficient for the validity, whenever

3 (T, <,) is an ordered set

and [:S— T, of the implication:

VyesS) (y<x > @€, xDS OGS )A

(x is not max§ = (Ay€S) x<y AV €] x, Y S ()<, S (1))
=> (<)

(5) [ increases (strictly increases) on S.

Proof. 1° Sufficiency. Under the suppositions (1), (2) and (3), let (4)
be satisfied. Suppose that (5) is not true, i.e. that there exist x&S and ycS
such that

@ (VXES){

x=<yNIf)< ()
(<)

(7] denotting the negation). Then obviously x is not the maximum of S. This
and (4) imply that the set

(6) P, iif{t: tESAX<tANV uC]x, t) f ()<, f (W}
<)
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is nonempty. By (1), y is an upper bound of P, and so, by (2), there exists

) z=supP,.

On account of (6), x<Cz. We have further

(®) ~Vee]lx 2N f )<, ().
(<)

Indeed, if t&]x, z[, then, by (7), there exists uc]¢, zZJNP,, which implies,

accordingly to (6), f(x)<{,f(?). If ]x, z[= &, then we conclude, using (6), (7)
(<)

and the fact P,# @, that

) zEP,.

If 1x,z[# o, let u€]x, z[. Then [u, z[Clx, z[ and, by (4), there exists
t&[u, z[ such that f(2)<, f(2). So

(10) A€l x, 2D (O<,f ().
From (8) and (10)
<,/
(<
follows, which togheter with (8) implies (9) again.
The proved relation (9) and the fact that y is an upper bound of P,

which does not belong to P, imply z<{y, and so z is not max S. Hence, by
(4), there is a u&S such that z<uA(VvE]z, u])f(2)<,f (). Then, ac-

cordingly to (9), u€P,, and z<{u, in contradiction with (’;). The proof of
sufficiency is over.

2° Necessity. Suppose that the chain (S, <) is not conditionally complete.
Then there exists a nonempty part U of S which is bounded from above and
has not its supremum. Let us denote by B the set of all upper bounds of U
and put A=S\B. The sets 4 and B are nonempty, A is without maximum
and B without minimum and we also have

(Vxed)(VyeB) x<y.
Let us put T=S and
def
v x, yET) x<,y & x<), if x, yEA4 or x, y&B,
x<,y, if xEB and yEA.

It is easy to see that this defines the ordering relation <, in T.

Then the mapping f:S— T defined by f(x¥)=x(x&S) satisfies the
condition (4), with symbols < and <, (and even a stronger condition), and
does not insrease on S. This completes the proof of necessity.

It is clear that Theorem 1 contains the following statement:

Theorem 1'. Under conditions (1), (2), (3) and (4), for every f:S—T,
(5) holds.
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Any of conditions (1), (2) and (4) cannot be omitted or replaced by a
definite weaker condition, even if some other conditions are simultaneously, in
a definite manner, strenghtened. More precisely, we have the following sup-
plementary.

Proposition 1. In Theorem 1’ one cannot:

1° omit condition (1) (i.e. replace 1t by the supposition that (S, <) is only
an ordered set), even if (3) is simultaneously replaced by the condition

(11 (T, <)) is a chain
and, eventually, the condition (4) by the following
(12) (Vx&S) @yeS) @zS8) 0<x<zAf strictly increases on [y, z]);

2° omit condition (2), even if at the same time one requires the total
ordering of (T, <,) and one replaces (4) by (12);

3° replace (4) by the condition in which the conjunction contained in (4)
is reduced to the first or to the second of its parts, even if the retained part is
simultaneously replaced by a stronger condition, namely the first one by

@y&S) (y<x A f stictly increases on [y, x]),
and the second one by
@y&S) x<y A\ f strictly increases on [x, y]),
adding simultaneously the condition (11);
4° replace (4) by
V%, 3, 2ES) (G<x => Q1€ 2D £ ()<, f DA (r<z >
= QuElx, 2)) £ ()<, f W)
Proof. 1° Let the set S be formed of the followed two chains:
0<.. < -3<-2<1I<3<.. and ... <4< -2<0<2<<4< ...,

each element different from zero of the first chain being non comparable to
any element >-0 of the second chain. Let further (7, <,)=(Z, <), where Z
denotes the set o” all integers; f(k)=k (k&S=2Z). In this case the conditions
of Theorem 1’ with all changes mentionned in 1° (and also with the condition )
unchanged) hold, but (5) does not hold, because 0<—1, f(0)=0> —1=f(~1).

2° The assertion is proved by the following example:

S=T=R\{0}, <=<,=<, f®= —%(xGS)

(R denotes the set of all real numbers).

3° &) Reduction to the first part of the conjunction, this part being

Strenghtened. Example:
x, x<0

6 <=T <)=R, <), f<x>={-i. x>0.
X
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B) Reduction to the second part of the conjunction, this conjunction being
Strengthened. Example:
_i’ x<0
S <LN=T <Y=R <), f(x)={ *
x, x=0.
4° Example: (S, <)=(T, <) =(R, <),

0, if x is irrational or x=0,

F)= g, if x=£, PEZN\{0}, gEN, the fraction |p|“q being irredu-
- q

cible, and ¢ is even,
—-q,if ... . ... . ... ......, and q is odd.

(We remark that this function f has the properties D~ f(x)=D* f(x)= + oo(x ER)
and D_f(x)=D, f(x)= ~ oo (xER).) -

However, there are some other and to Theorem 1 incomparable state-
ments which also give sufficient conditions for the monotony, resp. the strict
monotony, of the mapping f:S—T. First, we formulate the folowing result,
in which the total ordering of (S, <) is not supposed. ~

Theorem 2. Let the following conditions be satisfied:
(13) every nonempty subset of S bounded from below has a minimal element

and

(14) (Vx&S)(Vyes) <x > Ftely, x[) (O, /().
(<

Then the mapping f is increasing (stictly increasing) on S.

Proof. Let the conditions (13) and (14) be satisfied and suppose that f
is not increasing (strictly increasing) on S. Then there exist xS and y&S
such that :

(15) =<y A1 ()<, f ).
(<)
For such a fixed x, let us denote by Q, the set of all y satisfying (15). The

set @, is bounded from below and consequently has a minimal element z. We
have x<(z; by (14), there exists tC[x, z[ such that

(16) FO<. /().
(<)
We also have
a7 S,/ (@).
Indeed, (17) holds if x=t¢; otherwise, x<t<(z and hence f *)=<,f(@), since z
(<)

1
is a minimal element of Q,. By (16) and (17), f(x)<{,f(z), what contradicts

1
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the supposition that z is a minimal element of Q,. This contradiction proves
the theorem. —

One can add the following supplementary

Proposition 2. In Theorem 2:

1° condition (13) cannot be omitted, even if one supposes simultaneously the
total ordering of (S, <) and (T, <,), and one replaces (14) by the condition (12);

2° condition (13) cannot be replaced by the condition (2), even if one
supposes simultaneously the total ordering of (S, <) and (T, <,) and one rep-
laces (14) by

(18) (Vx&S8) (x is not minS = (Fy<<x) (Vi< x[) F(O< (X))
(<)

This statement follows immediately from Proposition 1.

Using the previous theorem and adding a supplementary consideration,
one easily proves the

Theorem 3. The condition
(13") every nonempty subset of S bouned from below has a min'mum

is necessary and sufficient for the validity, whenever (S, <) is a chain, of the
implication
(18) = (5).

Proof. The sufficiency follows immediately from Theorem 2, since (13’)
implies (13) and in the case when (S, <) is a chain (18) implies (14).

In order to prove the necessity, let us suppose that (S, <) is a chain
and that the set CCS is bounded from below and has not its minimum. Let
us denote the set of all lower bounds of C by 4 and let B=S\ 4. If T=S§,
and <, is defined as in the second part of the proof of Theorem 1 and
f(x)=x(x&ES), then (18) holds and (5) does not. —

A remark concerning Theorem 1 and Theorem 1. It is
easy to see that these theorems remain true if one displaces in (4) the symbol
(<)) on the corresponding place under the first row.

2. On the basis of Theorem 1, we shall prove the following statement
characterizing, in the general case, the strict increase of a real function defi-
ned on an interval.

Theorem 4. Let f:I->R, where R denotes the set of all real numbers
and I(CR) a nonempty interval.

1° For the increase of f on I it is necessary that

D_f(x)Z0AD,f(x)=0 on I,
(199 {excluding the requirement that D_f(a)=0 if a=infIc1, and that
D,f®)>0 if b=supIEl,



On relations between local and global monotony of mappings of ordered sets 11

and is sufficient that
with a restriction similar to that included in (19').

Therefore any of conditions (19} and (19) is necessary and sufficient for the
increase of f on I (and so (19') & (19)).

2° A necessary and sufficient condition for the strict increase of f on I is

(19 A (20) (or (19°) A(20)),

where
(20) (Vx&ES) D f(x)=>0V D+ f(x)>0), the set Sc_I being dense on I.

Remark 1. One can formulate the corresponding similar theorem
concerning strict decrease. Also, in the condition (19) of Theorem 4 one can
replace D~ f(x)Z0A D, f(x)=0by D_f(x)=0A D* f(x)>=0. Both facts are clear
with respect to the following proof and to the remarks at the beginning of 1.

Remark 2. Another statement containing sufficient condition, expressed
partially by unilateral upper derivative, for the increase of a real function on
an interval is well-know (see, for instance, [3], pp. 354—355, Example 1V).
This condition is the conjunction of the nonnegativity of D+ f, or of D~ f, on
the interval and the continuity of f on the same interval. It is evident that
this condition is essentially stronger than the corresponding condition (19) in
Theorem 4.

Proof of Theorem 4. 1° It is evident that the condition (19") is
necessary for the increase of f on I. Let us suppose the condition (19) be
satisfied. Then, for each ¢>0, the fonction g,:/—R defined by

g(X)=f(X)+ex  (x€D)
has the property

(Vx&l) (D7g.(x)=D"f(x)+e>0AD, g.(x)=D, f(x)+e>0).

This implies that the function g, satisfies the conditions of Theorem 1’, with
symbols in parentheses. Hence, for each ¢>0, g, increases strictly on I, and
consequently we have, for fixed x, y&1 such that x<y,

) +ex<f()+ey (e=>0).

Making e— +0, one gets f(x)<f()) (x, yEI, x<y). Therefore, the condition
(19) is sufficient.

2° If the condition (19) A (20) is satified, then in the first place f increses
on I. Further, for x, y&TI and x <y, there exists z&] x, y[ such that D=f(z)>0
or D*f(z)>0. Let, for instance, the first inequality hold. Then we have, for
a t€]x, z[, (f()-f@)(~2)>0, ie f()<f(2); so we get f(N<S(E)<
S(@)<f(») and consequeatly f(x)<f(y). f D+f(z)>0,we similarly obtain the
same conclusion. So the conjunction (19) A (20) iz sufficient for the strict in-
crease of f on I. It is also necessary, since (19) is already necessary for the
increase of f on I, and if (19) is satisfied and (20) is not, then f increases
on I and there exists an interval («, B)C /I such that

(VxE(@ B) DS (x)=D_f(x)=D*f(x)=D,f(x)=0,
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which implies (for instance, by 1° and by the corresponding statement concer-
ning decrease of f ou I; see Remark 1) f(x)=const on («, B).

An immediate corollary (special case) of the preceding statement is

Theorem 4'. Let the real function f have its derivative on the interval
I, understanding by the existence of the derivative at a=min I the existence of
f+'(a) and similarly for b=max 1. (The derivative can be finite or infinite and
the continuity of f on I is not supposed.) Then:

1° the condition
21 ff(x)=0o0n1
is necessary and sufficient for the increase of f on I,
2° f increases strictly on I if and only if (21) A(22) holds, where

22) VxES)f (x)>0, SCI being dense on I.—

At the end, let us remark that in textbooks exposing foundations of
mathematical analysis the connexion between monotony and sign of derivative
is usually established in the form of a statement which supposes the continui-
nuity of the function and the existence of its derivative (finite or infinite) on
the considered interval. Its proof is usually based on Lagrange’s or Rolle’s
mean value theorem, whose proof uses Weierstrass’ theorem on extrema of a
continuous function on a segment. Theorem 4’ gives an alternative possibility
in this way. Namely: Theorem 4’ is more general than the usual theorem, and
its direct proof (that is the appropiate form of the combination of the proofs
of Theorems 1’ and Theorem 4) uses neither properties of continuous functions
nor mean value theorems, and even not the notion of continuous function (it
really uses only the conditional completness of (R, <)), and finally it is not
longer than the proof of the usual theorem, taking into consideration all
auxiliary results preceding this second proof.
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