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Let f be a 2 m-periodic function of bounded variation on [—m, =] and
let S,(f, x) be the n-th partial sum of the Fourier series of f. If
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and the well-known theorem of Dirichlet-Jordan (see {1], vol. I, p. 57) states
that

(1.2) fim (S,.(ﬁ x)~—;—(f(x+)+f(x—)))=0.
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then

The aim of this note is to give a quantitative version of Dirichlet-Jordan’s
theorem by showing that, for n>1,
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where Vy(g,) is the total variation of g, on [0, y], y&[0, =]. ,
Since g,(f) is a function of bounded variation on [0, =], continuous at

the point =0, the total variation V3(g,), y<[0, =], of g,, is a continuous
function at y=0 and consequently

Vi (g)—0  (k—>).

This implies that the right-hand side of inequality (1.3) also converges to 0
and (1.2) follows.
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A result related to (1.3) was obtained by G. 1. Natanson [2] who proved
that for 2-rc-per10dlc continuous functions of bounded variation on [— &, 7]
we have
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Here, wy (s (8) is the modulus of continuity of the total variation V. .(f),
tE[‘—n’ 7:]’ Off

" This result is a simple con.equence of (1.3) since for continuous functions
of bounded variation we have

Vo(gx><V"”(f)<2wV<f> ®)
and (1.3) becomes
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which is essentially equivalent to Natanson’s result (1,4).
An estimate of a different nature for the rate of conveigence of conti-
nuous functions of bounded variation was obtained by S. B. Steckin [3] who

proved that
_
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where M (f) is a constant depending only on f and w,(3) is the modulus of
continuity of f. A more precise version of Steckin’s reault was obtained by
V. G. Kominar [4].

For the proof of inequality (1.3) it is sufficient to show that the following
result is true.
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Theorem. Let g be a 2 w-periodic funétion of bounded variation on [0, ]
with g(0)=0. Then
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Proof of the Theorem. We have

g sin(n+i)t
L@-— [s0 ——H—a-

2sin (7)

3 n
— V
~ 2

k=1

for n=1, 2,
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Since ; <n+~1— and g(0)=0 we have first
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To estimate B,(g) let
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We have then, by partial integration,

B, (g)=%g(%) An (%)+% f/\ » (1) dg (7).
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Since g(0)=0 and |A,(x)|<-= for 0<x<m, it follows that
nx

k3

|< T/n | i t .
lB(g),< Vi (g)+ ftho(g)

r/n
Using again integration by parts we find that
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Hence
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Since 5/ (g) is a decreasing function, we have
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Using (1.5) and (1.6) we find that
Tin 2 i T 3 z Tt '
1L(®)|<2V5" (9)+—— 3 Vi ()<= S V5" (9)
AT =1 B k=1

and the theorem is proved.
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