AN ESTIMATE OF THE RATE OF CONVERGENCE FOR FOURIER SERIES OF FUNCTIONS OF BOUNDED VARIATION

R. Bojanić

(Received May 5, 1979)

Let f be a 2π -periodic function of bounded variation on $[-\pi, \pi]$ and let $S_n(f, x)$ be the n-th partial sum of the Fourier series of f. If

$$g_x(t) = f(x+t) + f(x-t) - f(x+) - f(x-)$$

then

(1.1)
$$S_n(f, x) - \frac{1}{2}(f(x+) + f(x-)) = \frac{1}{\pi} \int_0^{\pi} g_x(t) \frac{\sin\left(n + \frac{1}{2}\right)t}{2\sin\left(\frac{t}{2}\right)} dt$$

and the well-known theorem of Dirichlet-Jordan (see [1], vol. I, p. 57) states that

(1.2)
$$\lim_{n\to\infty} \left(S_n(f,x) - \frac{1}{2} \left(f(x+) + f(x-) \right) \right) = 0.$$

The aim of this note is to give a quantitative version of Dirichlet-Jordan's theorem by showing that, for $n \ge 1$,

(1.3)
$$\left| S_n(f, x) - \frac{1}{2} (f(x+) + f(x-)) \right| \leq \frac{3}{n} \sum_{k=1}^n V_0^{\pi/k} (g_x)$$

where $V_0^y(g_x)$ is the total variation of g_x on [0, y], $y \in [0, \pi]$.

Since $g_x(t)$ is a function of bounded variation on $[0, \pi]$, continuous at the point t=0, the total variation $V_0^y(g_x)$, $y \in [0, \pi]$, of g_x , is a continuous function at y=0 and consequently

$$V_0^{\pi/k}(g_x) \rightarrow 0 \qquad (k \rightarrow \infty).$$

This implies that the right-hand side of inequality (1.3) also converges to 0 and (1.2) follows.

A result related to (1.3) was obtained by G. I. Natanson [2] who proved that for 2π -periodic continuous functions of bounded variation on $[-\pi, \pi]$ we have

$$(1.4) |S_n(f, x) - f(x)| \leq \frac{2}{\pi n} \int_{4/\pi n}^{\pi} w_{V(f)}(2t) t^{-2} dt + \frac{1}{\pi n} V_{-\pi}^{\pi}(f).$$

Here, $w_{V(f)}$ (δ) is the modulus of continuity of the total variation $V_{-\pi}^{t}(f)$, $t \in [-\pi, \pi]$, of f.

This result is a simple con equence of (1.3) since for continuous functions of bounded variation we have

$$V_0^{\delta}(g_x) \leqslant V_{x-\delta}^{x+\delta}(f) \leqslant 2 w_{V(f)}(\delta)$$

and (1.3) becomes

$$|S_n(f, x) - f(x)| \le \frac{6}{n} \sum_{k=1}^n w_{V(f)} \left(\frac{\pi}{k}\right)$$

which is essentially equivalent to Natanson's result (1.4).

An estimate of a different nature for the rate of convergence of continuous functions of bounded variation was obtained by S. B. Stečkin [3] who proved that

$$\left|S_n(f, x) - f(x)\right| \le M(f) w_f\left(\frac{1}{n}\right) \log\left(2 + \frac{1}{w_f\left(\frac{1}{n}\right)}\right)$$

where M(f) is a constant depending only on f and $w_f(\delta)$ is the modulus of continuity of f. A more precise version of Stečkin's result was obtained by V. G. Kominar [4].

For the proof of inequality (1.3) it is sufficient to show that the following result is true.

Theorem. Let g be a 2π -periodic function of bounded variation on $[0, \pi]$ with g(0) = 0. Then

$$\left| \frac{1}{\pi} \int_{0}^{\pi} g(t) \frac{\sin\left(n + \frac{1}{2}\right)t}{2\sin\left(\frac{t}{2}\right)} dt \right| \leqslant \frac{3}{n} \sum_{k=1}^{n} V_{0}^{\pi/k}(g)$$

for n = 1, 2, ...

Proof of the Theorem. We have

$$I_n(g) = \frac{1}{\pi} \int_0^{\pi} g(t) \frac{\sin\left(n + \frac{1}{2}\right)t}{2\sin\left(\frac{t}{2}\right)} dt =$$

$$= \frac{1}{\pi} \left(\int_{0}^{\pi/n} + \int_{\pi/n}^{\pi} g(t) \right) \frac{\sin\left(n + \frac{1}{2}\right)t}{2\sin\left(\frac{t}{2}\right)} dt =$$

$$= A_n(g) + B_n(g).$$

Since
$$\left| \frac{\sin\left(n + \frac{1}{2}\right)t}{2\sin\left(\frac{t}{2}\right)} \right| \le n + \frac{1}{2}$$
 and $g(0) = 0$ we have first

$$|A_n(g)| = \frac{1}{\pi} \left| \int_0^{\pi/n} (g(t) - g(0)) \frac{\sin\left(n + \frac{1}{2}\right)t}{2\sin\left(\frac{t}{2}\right)} dt \right| \le \frac{1}{\pi} V_0^{\pi/n}(g) \int_0^{\pi/n} \left(n + \frac{1}{2}\right) dt$$

or

$$|A_n(g)| \leq 2 V_0^{\pi/n}(g).$$

To estimate $B_n(g)$ let

$$\wedge_n(x) = \int_{x}^{\pi} \frac{\sin\left(n + \frac{1}{2}\right)t}{2\sin\left(\frac{t}{2}\right)} dt.$$

We have then, by partial integration,

$$B_n(g) = \frac{1}{\pi} g\left(\frac{\pi}{n}\right) \wedge_n\left(\frac{\pi}{n}\right) + \frac{1}{\pi} \int_{\pi/n}^n \wedge_n(t) dg(t).$$

Since g(0) = 0 and $|\wedge_n(x)| \le \frac{\pi}{nx}$ for $0 < x \le \pi$, it follows that

$$|B_n(g)| \leq \frac{1}{\pi} V_0^{\pi/n}(g) + \frac{1}{n} \int_{\pi/n}^{\pi} \frac{1}{t} dV_0^t(g).$$

Using again integration by parts we find that

$$\int_{\pi/n}^{\pi} \frac{1}{t} dV_0^t(g) = \frac{1}{t} V_0^t(g) \Big|_{\pi/n}^{\pi} + \int_{\pi/n}^{\pi} V_0^t(g) \frac{dt}{t^2}.$$

Hence

$$|B_n(g)| \leqslant \frac{1}{n\pi} V_0^{\pi}(g) + \frac{1}{n} \int_{\pi/n}^{\pi} V_0^t(g) \frac{dt}{t^2}$$

or

$$|B_n(g)| \leqslant \frac{1}{n\pi} V_0^{\pi}(g) + \frac{1}{n\pi} \int_1^n V_0^{\pi/t}(g) dt.$$

Since $V_0^{\pi/t}(g)$ is a decreasing function, we have

$$\int_{1}^{n} V_{0}^{\pi/t}(g) dt \leq \sum_{k=1}^{n} V_{0}^{\pi/k}(g)$$

and so

(1.6)
$$|B_n(g)| \leq \frac{1}{n\pi} V_0^{\pi}(g) + \frac{1}{n\pi} \sum_{k=1}^n V_0^{\pi/k}(g)$$

$$\leq \frac{2}{n\pi} \sum_{k=1}^n V_0^{\pi/k}(g).$$

Using (1.5) and (1.6) we find that

$$|I_n(g)| \le 2V_0^{\pi/n}(g) + \frac{2}{n\pi} \sum_{k=1}^n V_0^{\pi/k}(g) \le \frac{3}{n} \sum_{k=1}^n V_0^{\pi/k}(g)$$

and the theorem is proved.

REFERENCES

- [1] A. Zygmund, Trigonometric Series, Cambridge University Press, 1959.
- [2] G. I. Natanson, On Fourier Series of Continuous Functions of Bounded Variation (in Russian), Vest. Leningrad. Univ. 7 (1972), pp. 154—155.
- [3] S. B. Stečkin, On the Approximation of Continuous Functions by Fourier Sums (in Russian), Uspehi Mat. Nauk 7 (1952), pp. 139—141.
- [4] V. G. Kominar, The Fourier Series of a Continuous Function of Bounded Variation (in Russian), Isledovania po sovremenim problemam konstruktivnoi teorii funkcii, Moskva 1961, pp. 197—201.

Department of Mathematics The Ohio State University Columbus, Ohio 43210