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INTEGRABILITY THEOREMS FOR JACOBI SERIES
N. H. Bingham
(Received June 26, 1978)

Our object here is to obtain results hnkmg the integrability properties
of a function with convergence properties of series involving its Fourier-Jacobi
coefficients.

In §1 we introduce the necessary notation and terminology. In §2 we
state our results (Theorems 1 and 2) and discuss their relationship with pre-
vious work. The proofs of Theorems 1,2 follow in §§3,4. We close in §5 with
some comments on related work.

§1, Pfeliminaries.
1

For a2{32~—2—~, we consider the probability measure G ®on[-1, 1]

defined by

G® ) (dcos 0) = [@+P+2)

T(+1) T@+1)

The Jacobi polynomials are the polynomials orthogonal on[— 1, 1] under G®™ ®,

sin 2%+! %Gcos““fidﬂ‘

We choose the normalisation under which the polynomials take the value

1 at x=1; we write the polynomials thus defined as R™®. Then (19}, IV and
(7.32.2))

(RN RP @<l xe[-1,1]),
1
JRZP @) REP ) 6&9 @) =8, (=0, 1,..)
-1
where
LB _ re+n CrtatB+ DT n+a+p+ DT m+a+1)
" T+ T (x+B8+2) n!T(@m+B+1)
2r@+1) n2e+1[1+0 (1/m)]. '

(1.2) = .
, Fe+)T+p+2)
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If fEL,(G™®), we write

1
=] e REP ) 6= (dx)
-1
for the Fourier-Jacobi coefficients of f; we write
FG)~ 3 Fny Wi ® R P (x)
n=0

to indicate that the series on the right is the Fourier—Jacobi series of f.
1 .
When oc={3=k—~2~ (A =0) we write R®® Gase &P 0 w®  Gm,

w: Wk is the nth normalised Gegenbauer or ultraspherical polynomial. When

a=B= -—;—, we have

_io_t
R,<, 2 2,) (x) = wo (x)=T,(x)=cos (ncos~! x),

1 1 '
Wg 2 2>_—:W1(10):1 lf n=0, 2 lf n=1: 2» vy

when a=08=—,
g 2

U, (cos ) _sin(n+ 1)0
(n+1)  (n+1)sin6’

11
RSZ %/ (cos 6) = W (cos 0) =

<_1 ,L) »
wa? =P =+ 1)
(here T,, U, are the Tchebychev polynomials of the first and second kinds).

1 1 1
We refer to the cases oo=0== ——5, —5, i; as the cosine, sine and trigono-

metric cases respectively.

Let L be a function slowly varying (at infinity) in Karamata’s cense
([16]; [12], [18]). A positive function is gquasi-monotone if it is of bounded
variation on compact subsets of [0, o) and if for some (equivalently, for all)
3>0, o ‘

[1d @) =0G3f @) (x—>o0).
0

Then (Bojanic-Karamata [11], Th. 1) a slowly varying function L is quasi-mo-
notone if and only if it is of the form L=f,/f, with f; (positive and) non-de-
creasing with

LCD)=0(fi(®) (x—w©) (=1, 2).
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§ 2. Results.
) 3 .
Theorem 1. Take fEL (G*®), 0<o<a-+ 5 L slowly varying and

1 3
Cif at ?gc<oc + ) assume L quasi-monotone. If

@.1) S e WP L < o
then "
Tf2
2.2) ff(cos 6)0° L (1/6)d6/0 converges as x —0+.

Theorem 2. Take SEL, (G™®), oc+%<c<2a+2, L slowly varying

with L{pn+1)—~L (h) =0(L (m/n), and if o-+ -%~-<G§O€ + —;— assume L quasi-mo-~

notone. If

. w2

(2.3) - [ f(cos 8) 6 L (1/6) d0/6< oo
and ’

fcos""°‘+ﬁ %6 L(l/cos—;— 6) f(cos0)|dO< 0 (oc+ -*;”<G<O(+p+l)
/2

2.4

fcos”“é—@L*(l/coséﬁ) [f(cosO)|dO<<oo (c=a+B+1)

/2

(here L* (x)= [ L (u) dufu), then
1\

(2.5) i f W& L (n)/n" converges.

n=0

Note that in Theorems 1,2 our main hypotheres (2.1) and (2.3) (toget-
her with the antipole condition (2.4)) involve absolute convergence or summa-
bility, while our conclusions (2.2), (2.5) involve conditional convergence or
integrability in the Cauchy limit sense. This is also true of the results of
Robertson [17], who restricts himself to the trigonometric cases but treats func-
tions rather more general than the regularly varying functions L (n)/n® used
here.

On the other hand, in the trigonometric cases with L (.)=1, Heywood
([14], [15]) obtains results which improve the corresponding specialisations of
Theorems 1,2 by weakening the summability required in the hypotheses from
absolute to conditional (or Cauchy). Heywood’s methods require the Wiener
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Tauberian theory; the connection of Tauberian methods and of Heywood’s
work with the results above will be discussed further in §5.

Note also that if we restrict attention to functions f with ?(n)>0 for
all large enough n, (2.1) and (2.5) coincide and Theorems 1 and 2 become
more symmetrical. In the trigonometric cases, and with L(.)=1, Boas [9]

proves that with f(n)>>0 convergence of the series is equivalent to the Cauc-
hy-integrability condition (2.2) at the origin (which in turn is équivalent to a-
Cauchy-integrability condition at each other point of [0, m)). See also Ganser
[13] for the ultraspherical case a=f with L( y=1

Under more stringent conditions on f (n), more is true. Wlth f (n) 10,
convergence of the series is equivalent to absolute integrability. Results for the
trigonometric cases with L as above were given by Aljandié, Bojani¢ and To-

mié [3]. Monotonicity of f (n) can be weakened to f(n-+2)—f(m)>0 (Ganser
[13], Boas [10]) or to quasi-monotonicity (in Szész’s sense; Yong [20]). Ana-

logues with monotonicity conditions on S{cos6) rather than fA(n) were obtained
by Adamovi¢ [1], [2]; cf. Boas [10].

§ 3. Proof of theerem 1. |
Take r&(0,1), anckikwrite
| £, (cos 0) = s* mF ) w® R®® (cos 6)
for the Abel-sum of the Fourier-Jacobi series of f. Then (see,y e.g. Ba\}'inckr[S}',;

Th, 2.4) f,~>fin L -norm as r—1—. So f,g—>fg in Li-norm for bounded .
g. Thus for xE(O ~ TC) we have

1

— T
2

O“L(i /6)d6/6 g m Fm) wl P R&® (cos 6)

n=0

3.1 .
2
—->f~asL(1/6)f(cosB)d6/6 r—1-).

By (1.1), (1.2) and dominated cOnvergehce, the left-hand side is

1
—wrr

- (3.2) o %0 m f(n) w® f 8° L (1/6) RS‘*B’ (cos 8) d6/9.

Since 6>>0, (1.1) shows that the integral in (3.2) converges as x—>0+. We
next show that this integral is 0 (L (n)/n°) uniformly in x: ,
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3 1 3
Lemma 1. Take 0<o<oc+7, and if oc+3-<c<oc+7 assume L
quasi-mong tone. Then 4

1
—T

2

[ 6L (1/8) R*® (cos 6) d6/8 = O (L (n)/n°)

X

uniformly for xE(O, %TC)

Proof. Choose >0 arbitrarily small. If x>8/n, (1.1) gives

. . 1
™ — 7T

L

. : ‘
6° L (1/6) R ® (cos 6) d6/6 | < [ 0°L (1/0)d6/0

3/n
n/8
= [ 1oL (t)di)t
2/m
‘~cL (n)/n°® (n—o0).
L
2
This also deals with the contribution f if x<8/n. If 0<x<<8/n, we use the
&fn :
asymptotic formula
, 1 1
1 Ja(n6+—6(oc+(3+ 1))
2
Rga’ B (COS e)= r (O€+ 1) ( 6 ) 2
. 1 1 1 sin 6 L1 1
n+—oa+-—PB+— sin*—— 0 cos® —0
(3.3) 2 27 2 2 2

+0(%?
([19], 197, Th. 8.21.12). The contribution of the error term is

8/n

O([62-05L(1/0)d0/0)=0 ([ 6=+2 L (1/8)d6/0) = O (L (n)/n"+?).
0

0
The contribution of the main term is asymptotic to

1
—T

2
1 1
Ju<n6+—2—6(a+{3+1)) L

1 60 L (1/6) d6/6
sin* —0 cos® 1 6 sin

X
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1
— T

=€”"°‘f 6—“J“(n6+%0(oc+f$+1)>-B°L1(1/6)d9/8 (with L,~L)

1
—nm

: 2
= cn“’f u " J«(u-l— 5’—‘— (a+p+ 1)) ue L, (nju) dulu.
n
nx
Recalling that 0<<nx <3 and 3 is arbitrarily small, this is easily seen to reduce to

«©

(3.9 | en=°| u=*J,(u) -u® L, (nfu) dulu
0

plus terms of smaller order. If 0<c‘<oc;—k—‘,12— the integral above is abéolutely

convergent, and is asymptotic to

-

(3.5) i cL (nyn=o° [ us==J, (u) dufu

0

as n—oo (cf. Bojani¢-Karamata [11], Th. 5, [8]). If a+—;—<c<oc+%- and L

is quasi-monotone the same estimate follows by another result of Bojani¢ and
Karamata ([1 1], Th. 6; [8]) here the integral'in (3.5) is only condltlonally conver-
gent and that in (3.4) is taken in the Cauchy-limit sense. ,

By the lemma and hypothesis (2.1), we can use dominated convergence
to let r— 1— in (3.2), obtaining
1 : 1

i Fm)y we® [ §o L (1/6) R™® (cos 6) 46/0 = f 6 L (1/6) £ (cos 6) 40/9.

By the lemma and (1.1) again, we can now use dominated convergence to let
x— 04 this yields (2.2) and completes the proof.

§ 4. Proof theorem 2.

Our method of proof here ‘is analogous to that used by Genser’[13] for
the ultraspherical case, extended to the Jacobi case by the techniques of [6].

We have

z Foywe® L o= f F(cos 6) { s A0

n== 0

L(n) (a; B g ® (cos 9)}

4.1) G@® (d cos 0).
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. . . . . 1
We obtain bounds on the expression in- braces, uniform in N, on (0, Zn]

and [% T, rc), from which (2.5) will follow from (2.3) and (2.4).

Lemma 2. If a+%<o<2a+2,

X LM W B e B . etz : TN
P R (cos)=0(0 L(l/e)/e‘/ ) (66(0,2 D

uniformly in N.
Proof. If N<1/6,

L) w&® REB (o5 0) i‘<c S L)
n<n  h° o [ a<ijg n°

n2e+l= 0 (ec‘L(l/e)/euﬁ-rZ)'

In what follows, we may thus suppose N>1/0. Write
U,(0)= z wi® R ® (cos ).

By the Christoffel—Darboux identity Jacobi polynomials ([19], 71; [6])
U, (0= (B wirth B REHE D (cos B).
Cr+atf+2)

Using Szego’s asymptotlc formula for the Jacobi polynomlals ([19], Th. 8.21.13)
this gives

1
o:+~2~ oc+~ [3—{—-2»

U,®=0m /b (=—9)" ) @/a<0<w - 3/n).

Suppose for the moment that 1/0 is an integer. Summing by parts,

L (n) Wf,a, 8) RSX" 8 (COS 6) —_ (L (n)) U (e)
1fo<n<N N1° 1/6<n<N n°

—Uye 0)9° L (1/6)+ Uy (0) L(N)/N°. ‘
By assumptlon AL(n)=0(L (n)/n), and so A(L (n)/n”) 0 (L ®/n°+1). For
0c (O, —;— n] the sum on the rlght is thus

o(e_<“+%>. 5 Loy T2 ) 0 (6° L (1/0)/62%+2)

1/6<n<N . ‘
since c>oc+%.’The second term onthe right is also 0 (6L (1/6)/62%+2) (and
so is the term omitted above if 1/60 is not an integer). Since c>oc+—;—,

a+——

L(n)n /n is regular]y varymg w1th negatlve index, and is. thus asymptoti-

4%
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1 1
; . at— at 5
cally decreasing. So for N>1/8, L(N)N g JN°=0(0°L(1/6)/0 2 ). Combi-

ning, the lemma follows.

Lemma 3. For 06[%1:, -n:), write o=m 0. Then

‘ o) if o>a+B+1
g: L(f) @ B)R(awﬁ)(cosﬁ) {0(5*(11’@)  focatpel
e 7 0 (@ L(1/D)/d*+*+) if o<a+B1

uniformly in N (here L*(x)= f L) dt/t).
. 1

Proof In terms of the un-normalised Jacobi polynomials P, ([19], IV)
ntl(x+2)
F'n+a+2)
(=rn!l(=+2)
'n+a+2)

T@+2) Tr+B+1) RE D (605 ).
F@E+1) Drtat2)

RETL® (cos ) = PETL® (cos 0)

P& (cos d)

(Szegd [19], (4.1.3))

= (-
But
1—R®® (cos0) =0 [(1 - cosB) sup | DR By 1=0(2n)
(Szegd [19], (7.32.10)), and so if 0<d<3/n '
RETE® (cos 6) = 0 (1/n%+1-9),
U,,(@)=0(n“-n2°‘+3/n°f+1—6)=0(n¢+ﬁ+1)_

As above, we suppose for the moment that 1/¢ is not an integer and sum by
parts: if N<1/b, ; ,

L0 o0 B0 D cos)= - 3, A(L(n))U O +L(N)N-Uy(©)
nsN e n<N
==3 O(L(”‘)/n"“)'o(ﬂ“ﬁ“)+0(L(N).N~°.N°‘+B+1),
n<iN

The term: omitted if 1/d is not an integer is O(L(I[Q)) cpv/q;ww) If
s>a+B+1, the right-hand iside is 0(1). If o<a-+PB+1, both terms on the
right are O(N—°-L(N)-N**#+1)= 0(@°L(1/d)/d*+e+Y). If o=a+B+1, the
first term on the right is

0(Z L(/m=0 @* (V) =0 (L* (1/)).

. Combmmg, the lemma follows if N<1 /®. This also deals with the sum over
0<ngl/d if N>1/b. R o
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On the other hand, if N>1/p
Ln)

e w@ B g &) (cos 6)
H/d<n<N .

-~ 3 A(Ln(”))v(e) &7 L (1) Usig ©) + N~ L(N) Uy 6).

1/fd<n<N

We use Szego’s asymptotic formula as above. Since 0 is bounded away from
zero, this is
L1

L(n) N2

B[ =

o4

o|L®

c4+1
nert gy

)

+0(d7 L (1/d)/p*+*+1) +0

1/d<n<N B+%

(ST

b

1 . .
As c>oc+—i—, the sum on the right is

_(a+ —i) HZL
0@t X L@ =0 @ LU
1

ot —
and similarly, so is the third term as L(n)-n >/n® is asymptotically decrea-
sing. Thus

L(n).
lp<ne<N H°

wi ® R P (cos 0) = 0. (97 L (1/)/p*+*+).

Combmmg, the lemma follows
From Lemmas 2 and 3, z n=°L(n) w®® R*® (cos6) is bounded on

=0
compact subsets of (0, x) umformly in N, and satisfies uniform O-conditions
at 0 and = corresponding to the integrability hypotheses (2.3), (2.4) on f.

. 3 . 1
Write p=2a+ 2 —o; then 0<p<oc+-2— since oc+?<o<2a+2. By the

results of [6] with o replaced by o, Z n= L (n) w® R®® (cos 6) converges
n=0

. 3 . 1
on (0, ) (recall L is quasi-monotone if oc+—;—<c<oc+?, that is, oc+?<

'3
p<<ot 2) Hence both Z n=° L (n) w®R®® (cos B) and S n°Ln)wy ®
n=0 n>N
. R®P® (cos 0) satisfy the uniform O-conditions of Lemmas 2 and 3.

We now return to (4.1), and write its right-hand side as

4 1/N

[2-]3[5] 3

[} 1/N 1/N
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in an obvious notation. Using dominated convergence, the vniform O-estimates
above and (2.3), (2.4), the :econd term on the right converges as N—>
while the first and third terms tend to zero. Thus the left-hand side of (4.1)
converges as N —co, which proves Theorem 2 as-required.

 § 5. Complements.

1. Theorems 1,2 link the behaviour of f(cos8) at the origin with that
of f(n) at infinity. Other such links are known: for example, in [6] the rela-
tionship between regular variation of f(cos9) and f(n) is thoroughly explored
(cf. Aljangié-Bojanié-Tomié [4]). In [6], the implication from f(n) to f(cos®)
(as in Theorem 1) is Abelian in nature and that from f(cos8) to f(n) (as in
Theorem 2) Tauberian. We regard Theorems 1,2 here as Abelian and Taube-
rian, by analogy and for reasons to be discussed further below, although it
is significant that Tauberian methods play no explicit role in the present paper.

2. For the reasons for the different roles played in Theorems 1 and 2

. 1 3
by the strips {)<c<oc+—;—, m+—2~-<c<a+—§—, oc+—32-<s<2oc+2 we refer fo

[6] (where they are called the strips of absolute convergence, conditional con-
vergence and Abel summability). We point out that Theorems 1 and 2 become
more symmetrical when attention is restricted to the strip of conditional con-
vergence. ‘

3. The results obtained here and in [6] have analogues for Hankel trans-
forms, essentially because of the occurrence of the Bessel functions in the -
asymptotic formula (3.3) (cf. [6] for details). The question then arises of ex-
tending these analogues to integral transforms with more general kernels. This
is done at length in [7] and [8], using the Wiener Tauberian theory. It is
interesting to .note that, whereas slowly varying functions L play a natural
role throughout [6], [8] and the present paper, in [7] we must confine oursel-
ves to the case L(.)=1 (cf. [7] for counter-examples). This essential restric-
tion is reflected here in the lack of a Tauberian result (in Theorem 2) when

0<c<oc+~1—.
2

' . . 1 ’ . :
4. In the trigonometric cases «=p= i? the results mentioned above

for Hankel tran forms specialise to Fourier cosine and sine transforms. Corres-
ponding results for cosine and sine series (with L(.)=1) were obtained by
Heywood [14],  [15]. The Wiener Tauberian methods used in [14], [15] and
[7] provide results in which Cauchy integrability (or conditional convergence)
appears in both hypothesis and conclusion. Thus Heywood’s results improve

the cares a=f= i-;, L(.)=1 of ours, not only by weakening the hypo-
theses from absolute to Cauchy (or conditional) summability, but also by fil-

3 ) 4
ling the gaps in the parameter-ranges (oc + Py <o<2a+2in Th. 1, O<o<a+
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—;- in Th. 2). The question arises as to whether the case L(.)=1 of our

results with general « and P is capable of similar improvement, but this we
leave open.

5. Other types of integrability results relating f(cose0) to f(n) are also
possible. This is sufficiently exemplified by the trigonometric cases, which (as
the discussion above indicates) are particularly interesting. For many other
formulations in these cases, and a wealth of additional information, we refer
to Boas’ monograph [10].

6. We have made two restrictions on the slowly varying functions L, -
namely quasi-monotonicity and AL (n)=0(L (n)/n). For the first, we refer to
Bojanic and Karamata [11], where slowly varying quasi-monotone functions
are characterised and their great use in asymptotic estimates such as in Lemma
1 (and in the convergence properties of series such as Fourier) is explained
in detail. For the second, we recall Karamata’s characterisation of slowly va-

rying functions as those with
X

L(x)=c(x) exp (fs ()] du/u)
. 1
with c(x)>c&(0, ), e(x)—>0 as x-—>oo. This representation is not unique,
and the smoothness properties of L(x) are limited by those obtainable for
¢(x). For those L(.) for which c¢(.) may be replaced by c (called normali-
sed varying functions), one has

kL (x)/L (x)—0 (x —o00).

The restriction AL (n)=0(L (n)/n) is somewhat similar but very much weaker.
It provides a mild degree of control over the oscillations of c¢(.), and is
dictated, by our use of the Christoffel-Darboux identity, without which the
orthogonality property cannot be properly exploited.
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