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BOUNDED FUNCTIONS WITH NO SPECTRAL GAPS*
Richard Bieberich
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Let A=) % be a monotonically 1ncreas1ng sequence of real numbers,
and let E be the union of all the intervals (A, A,,,,). Several conditions are
given which are sufficient for the characteristic function of E to have no
spectral gaps.

1. Notation, Definitions, and Facts

Let f&L* (R). The Fourier-Carleman functions

. 0
Fr(f,2)= [f@)e-i=dt

énd
F(f,)=— [ f()e-=ds
0

are holomorphic in the upper and lower half-planes, respectively. Any open
interval on the real line across which F* (f, z) and F~(f, z) continue analy-
tically to each other is salled a spectral gap for the function . The spectrum
of f, denoted by o (f), is the set of all points on the real line which do not
belong to any spectral gap of f.

The following facts are well known [6, Chapter VI]: if 6 (f)=a, [ is
zero; if o (f)={0}, f is a constant; if f is periodic, o (f) is discrete; f has
the open interval I as a spectral gap if and only if f&=g=0 for every
g&L'(R) such that the support of 2 (the Fourler transform of g) is a com-
pact subset of I

If g and /& are locally integrable functions on R, we set

Cx+1
Ds<g,h>~supf 80— | dr

3*
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The closure of the space of trigonometric polynomials with respect to
the distance Dg is the collection of Stepanoff almost periodic — shortly:
SAP — functions.

We shall need the following fact [1, p. 104]: if f is a SAP function,
the expression

T
1 ;
— x) e > dx
o |7
-

tends to a limit a(f, 2)=a(}) for every real number A as T-—co. The values
of ) for which a(f, 2)#0 are called the Fourier exponents of f.

Let A=(»,)"% be a monotonically increasing sequence of real numbers,
and let E be the union of all the intervals (A,,, A,,,;). A set E obtained in
this manner we will denote by E=E ().

A function which takes only finitely many values and whose discontinui-
ties from a discrete set is called a step function.

2. Introduction

There are two extreme cases in which a non-constant bounded real-valued
function g has no spectral gaps:

(1) if one of the two Fourier-Carleman functions F* (g, z) and F~ (g, 2)
has the real line as its natural boundary;

(2) if one of F*(g, z) and F~(g, z) is analytically continuable across the
whole real axis, or across the whole real axis except at the origin.

The statement is obvious for case (1). In case (2), if g had a spectral
gap, it would follow by analytic continuation that c(g)= @ or {0}, so that g
would be a constant, contrary to the assumption.

Computing the Fourier-Carleman functions for yz, where E=E(}), we
~easily deduce from (1) and (2) that y; will have no spectral gap if one of
the two Dirichlet series

-1
FrnD= 3 (~lpttes, Imz>0,

H=—00

and
f-0, =3 (~ e, Imz<0,
R n=0
is analytically contmnuable across the whole real axis, or if one of the two

“series has the real axis as its natural boundary. From this remark we obtan
examples of sequences A=(A)¥% such that Agqy has no spectral gaps.
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Example 1. 2,_ ,=logn, n>N, N a positive integer.
If A, ;=logn, n>1, then

f70u D= 3 (~ 1Y e D= (1 - 2175 i)
n=0

is an entire function, { representing the Riemann zeta-function.

If ,_;=logn, n>N, f~(» z) differs from (1—-2'-#)%(iz) by a finite
linear combination of functions of from e~z so that f~ (), z) is again an
entire function.

Example 2. A,=n% n>N, N a positive integer, 0<o<<1.

It is sufficient to consider the case A,=n* for #>>0. In that case, it is a
result of Hardy [5] that

=3 (-re ™z
n=0
is an entier function.

. A
Example 3. lim %= o0,
n—>0 A
In this case it follows from Fabry’s gap theorem [9] that f- (A, z) either
has the real axis as natural boundary or is analytically continuable across the
whole real axis.

The questions we are considering are special cases of the general problem:
for which measurable subsets E of the real line does the characteristic function
of E have no spectral gaps? The analogous general problem, which arises when
the real line is replaced with the group Z of integers, is easy to solve. Namely,
if E is a subset of Z, the characteristic function of E has a spectral gap,

i.e., the series
Z 2" and D 2"

ncE nCE
n>>0 n<0

continue analytically across some arc of the unit circle into each other, if and
only if the set E is periodic. This follows from the classical theorem of Szegd
on power series the coefficients of which take only finitely many distinct
values [4, pp. 324-—327].

The situation is completely different on the real line: there are non-
-periodic subsets of the real line whose characteristic functions have spectral
gaps. A simple example of such a set, due to Logan [8], is {x{cos(x+
+ 2 arctan x)>0}. " Logan and Shapiro have obtained complete characterizations
of bounded functions, characteristic functions of measurable sets, and charac-
teristic functions of sets of form E(A) which have the interval (—a, a) as a
spectrrl gap (Theorems 7.6.3, 7.6.5.6, and 7.6.6.7 in [8]).
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3. Theorems and open questions

If a bounded measurable function s has for .spectrum the whole real
line, then so does any translate of s. Our first theorem is a generalization of
this elementary fact.

Theorem 1. Let s and q be bounded measurable functinns on the real
line and let o(s) be the whole real line. [f there exists a sequence A, of measu-
rable sets such that

i) xu,— 1 almost everywhere as n—-oco and’

i) for every n there is a translate gq, of q such that q,(t)=s(t) for t
in A,, then c(q) is the whole real line.

Applying this theorem to the case where g =yzay, 4.=*,—A1s
sz~ Ms)s Gn (1)=g(t+1X,,,), and where s is the characteristic function of
either the positive or negative half-line, we obtain the following corollary.

Corollary. If A=(a,)"% is an increasing sequence of real numbers and
if the sequence m,=min{A,,; —*,, A,.,—A, .1} is unbounded, then the charac-
teristic function of the set E(A) has no ‘spectral gaps.

The unboundedness of the sequence in the corollary imposes a thinness on
the exponents in two Dirichlet series and the conslusion concerns the analytic
continuation of those series. Thus the corollary gains independent interest
because it is near the classical group of gap-type theorems, whose purpose is
to make conclusions about analytic continuation of functions defined by series
on the -basis of the sizes of gaps between exponents.

It should be observed that neither of the two conditions — the one in
the corollary and the one in Example 3 — implies the other. We do not know
whether the condition in the corollary can be replaced by the weaker condition
that the sequence A,,,—2, is unbounded. ‘

The set E={x|cos (x+2arctan x)>0}, the characteristic function of which
has a spectral gap around zero, is the union of the intervals (A,,, Ay s1)s

where X, is the unique root of the equation x+2arctanx=r:n—%, so that
3 \ ' s —o .
7\,,=Tcn——2§+0(}n{—1). Thus, in this example, the sequence (A,)” e is, in a
.- 3w\t . .
sence, close to the periodic sequence [mwn—— . One might expect that,
whenever A is close to a periodic sequence, the characteristic function of E®)
will have a spectrall gap, an expectation which might be strengthened by the
corollary, where A was far from being periodic and where y(, had no spectral
gaps. Actually, quite the opposite is true. If the periodic sequence p=(p, i ’
is perturbed, namely if it is replaced by the slightly nonperiodic sequence -

A=, % such that
3) : |>\n¥p,,j=0(e—ﬁ") as n—>+oo, B>0,

then the spectrum is drastically changed: ¢ (xz(,) Was discrete, but o (xza) Is
the whole real line. More generally, we have the following theorem.
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Theorem 2. Let P be a measurable periédic set, E a measurable non-
-periodic set of positive measure, and S the symmetric difference of E and P. If
there exists an a>0 such that

4) » f e“tdt<< oo,
SN(0,00)

then yp has no spectral gaps.

We observe that, if condition (3) is satisfied, then (4) is al'o satisfied
with S being the symmetric difference of E(p) and E()). For, since p is a
periodic - sequence, p,.;—p,>y>0, and, since also A, —p,—0, we have
Du1<A<p,., for n large enough. Thus, for a large L, SN(L, ) is contained
in a union of intervals I,, n>>N, the endpoints of I, being A, and p,. Since p
is periodic, we can find M >0 such that p,<<Mn and r,<Mn for n>=N, and so

J &t di=n,—p,| er¥n< CecM-0om,
In

so that (4) is satisfied with suitably small «>0.

We do not know whether Theorem 2 remains valid if (4) is replaced by
by the weaker condition m(S)< .

Let p,=1, p,=m, and p3=—§~1-. Let E,, v=1, 2, 3, be the union of
™

the intervals (2np,, (2n+1)p,), n<Z. Then, if D=E NE,NE,, xp is the
product of the characteristic functions of the E,'s, and is a non-periodic SAP
function. If the Fourier series of the y,'s are computed, if these series are
formally multiplied, and if all terms with a common exponent are grouped, it
is found that the only exponents whose associated coefficients do not vanish
(those coefficients which do vanish present themselves as series which are
summable in closed from) are contained in a union of three arithmetic progres-
sions, so that, by Lemma 2 which appears below, y, has spectral gaps. The
function in this example, communicated in a letter from Bernard Ploeger,
University of Dayton, Dayton, Ohio, is close to being periodic, but in an
arithmetically different way than were the characteristic functions of the perturbed
sets described prior to Theorem 2. It is not true that every non-periodic
SAP yz0) has spectral gaps, as we show in our last heorem.

Theorem. 3. Let each of the periodic sets E,, 1<v<k, k>2, be a
union of disjoint intervals whose endpoint form a discrete set, and let D and -U
denote the intersection and union, respectively, of all the E,/s. Let p, be the
period of E,. If the numbers p,~', 1<v<<k, are rationally indepedent, then
o (xp) and o (yy) are both the whole real line.

Ploeger’s examples show thaj the rational independence of the inverses
of the periods cannot be weakend to pairwise rational independence. The cha-
racteristic functions in Theorem 3 are also non-eriodic SAP functions, making
it desirable to have a characterization, probably arithmeiic, of the non-periodic
SAP yzay' s which have spectral gaps. We do not have such a characterization.

We shall actually prove a slightly more general result than Theorem 3.
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Theorem 3'. Let f,, 1<<v<k, k=2, be real-valued nonconstant periodic
step functions with periods p,, 1<v<k, and let f=f,, ..., fr. If the numbers
p, Y 1<v<k, are rationally independent, then o (f) is the whole real line.

K
Theorem 3 follows from Theorem 3’ since yxp=]] xsz and xy=

v=1
=1- H Xc(Ey-

We conjecture that any functlon in the algebra generated by periodic
step functions is either a finite sum of periodic functions or has spectrum the
whole real line. Theorem 3’ is a special case of this conjecture whose proof
apears to rest on deep results from outside Harmonic Analysis. This proof
is based on the following three lemmas.

Lemma 1. Let f,, 1<v<k, k=2, be bounded measurable periodic
functions of bounded variation with periods p,. If the numbers p,~!, 1<v§k, are
rationally independent, then the closure of the set o (f)+o(f)+ - +o(fp) is
contained in o (fi-frs -5 fi)

Lemma 2. The spectrum of a bounded SAP function is the closure of
its set of Fourier exponents.

Lemma 3. Let f be a complex-valued periodic step functwn The set

{n[nEZ+ fn)= 0} differs from a periodic set in Z* by at most finitelly
many terms.

The second lemma is a generalization of the analogous result of Bochner
and Bohnenblust for Bohr almost periodic functions [3]. A proof of this gene-
ralization requiers only minor modifications of the arguments in [3], so we do
not reproduce here a proof of Lemma 2, but refer for details to [2].

The third lemma is based on the following result of Lech [7].
(5) If a sequence (c,); of complex numbers satisfies a recursion formula of
the type
C,=0C,_+ - +o,C_, V=H,

and if ¢,=0 for infinitely many values of v, then those ¢, that are equal to
zero occur periodically in the sequance from a certain index on.

We remark that, for the proof of Theorem 3’, we need only the following
corollary to Lemma 3.

Corollary. Let f be a periodic real-valued non-constant step function.
There exist positive integers @ and b such that f(an+5)#0, n==0,1,2,... .

To obtain this corollary we need only remark that the set {n|ncZ+,
7 (n)#0} is mfinite since f is real-valued, and that an infinite set in Z+ which
differs from a periodic set by at most finitely many terms must contain an
infinite arthmetic progression.
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4. Proofs

Proof of Theorem 1. Suppose that g has a spectral gap. Then we can
find an integrable function b, whose Fourier transform has compact support,
for which s+ 6+#0 and g+ b=0. Then, for some real number a,

0

(s¥b) (@)= [s(t)b(t—a)dt—d+0.

. —oo

Using hypothesis ii), we obtain, since g,*b is a translate of g=b=0,

= fq,,(u)b(u—a)duz fs(u)b(u*a)du—i— fq,,(u)b(u—a)du,

An C(4n)
so that

[s@bu—aydu=— [ gq,u)bw—a)du.

An C(dn

Since, as n— oo, the left side tends to d;éO and the right side is, in
absolute value, less than

lal. [lb@-a)du,
C(4n)
which tends to zero, we have a contradiction.

Proof of Theorem 2. Condition (4) may -be written as

[ a0 =1p(0) | < oo,
0

which implies that F~(yz—xp, z) is holomorphic on Imz<a. Since the
assumption that E is non-periodic means that y.— yp, is not almost everywhere
equal to a constant, we obtain from (2) that yp—y, has no spectral gap.
This ends the proof, since, if y; had a spectral gap, it would follow from the
discreteness of o (yp) that y.—yp, would also have a speciral gap.

Proof of Lemma 1. Let f=f, -fz, .., fix- The Fourier series for each f, is

2nm

S hwe
and the partial sums of these series are
Znﬂ: 2nm
Sy,m (X) = Z fv(n)e Py
Let S, (x)=3S,,,, (%) Sy (%), ..., St (x). We shall show that

(6) Dg(Sm>f)—>0 as m—>oo.
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Then, since each S, is a trigonometric polynomial, f will be a SAP
function, Since f, is of bounded variation, the partial sums S, , (x) are uni-
formaly bounded, so there exists an M such that | S, , (x)|<M and |f, (x) |<M,
1<v<k, for all real numbers x, and m=1,2,... . Several applications of
the triangle inequality yield

k

DS(Sm’f)SMk—l Z DS(Sv,m’f;f)'

y=1

Since S, ,, tends to f, in L'(0, p), and S, , and f, are periodic with
period p,, it follows that Dg(S, ,..f,)—>0 as m-—>o, so that (6) holds,
From (6) we obtain

Q) ' a(f, = lim a(S,,. ).

m—>e0

An element of o(f)+o(fy)+ - +0(fr) has from

. PN ‘
®) Azzn(ﬂ+ﬂ+...+’ﬁ«_), n,CZ, f,(n)#0, 1<v<k.
D1 pz D

Since the numbers p,~%, p,”% ..., p,~! are rationally independent, the
integers n,, n,, ..., n, are uniquely determined by. A. For such a A, after
multiplying the partial sums S, ,,, 1<\v<{k, we obtain

A(Ss N =1, 1) o (1) - - - o (),

for m>max {|n,]|

1<v<k}, and thus, by (7),

a(fs D=1, @), (1) -« - fi o) (ma).

Since all the factors on the right are non-zero, a (f, &) is also non-zero,
so that, by Lemma 2, A& o (f). Thus o(f)+o(f,)+ - +06(f,) is contained
in o(f), and, since o(f) is closed, our conclusion follows.

Proof of Lemma 3. We can assume that f has a discontinuity at zero.
If the period of f is a, then there is a partition 0=x,<<x; < - <X, <X,=a
of [0, a] and there are complex numbers c;, 1 <j<<m, such that

=2 sy Si=(x_1 X)), 1=j<m,
=t

on (0, @). Calculating f(n) for n#0, we have

(9) ' Foy=sie S de e
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where d;=c;—¢;.y, 1<<j<m—1, and dy=c,~c,. Letting D;=id,(27)~' and
2T

zj=e_l7xj, 0<j<m—1, we have, from (9),

nf(n) = mil D;z,
j=0

For each n>1, let g,=nf(n). The g,’'s are bounded, and we can write,
for |z|<1,

L) w fm—1 m—1 © m=1 . -z [](Z)
£ 2"~ D) =5 by 3 )=y 22O,
ngl n= 1(;Z jgo ! ngl ! j=0 1—22j q(2)
where p and g are polynomials. If p(z)=ay+ - - +a,zF and q(z)=b,+
+ -+ 4b,z" and if n>max {k, r}, we have
bogn‘f'bl gn—l 4 +‘brgn—r=0'
Noting that 5,70, we then have, again for n>max{k, r}

gn:BI gn—‘1 +Bzgn~—2+ Tt +Brgn~r’

where 8;= —b;b —1, 1< J=r. Adplying (5) to the sequence (g,);, we see that
the set {n nEZJr g,=0} is periodic, save for possibly finitely many terms.

Since g, = nf (n), the lemma is proved.

Proof of Theorem 3’. Since the f,'s are of bounded variation, we can
apply Lemma 1, and thus it is sufficient to show that the set S of all num-
bers A of form (8) is dense on the real line. An apphcatlon of Lemma 2 will
then show that o (f) is the whole real hne

We apply the Corollary to Lemma 2 to the functions f; and f, so that,
S
for some. positive integers a,, d,, a,, and d,, we have f (a, +d,r)#0,
S
r=0,1,2,...,and f,(—a,—d,5)#0, s=0,1, 2, ... . Choose integers n,, ..., n;

N
such that f;(n;)#0, 3<j<k. It follows then that the set S, of numbers of
the form

)\Zzﬂ(al+d1r+ —a,—d,s LI +’Lk>’
Dy Py D3 Pr
where ¥=0, 1, 2,..., and 5=0,1,2,... , is a subset of S. Setting a=
=2nd p,~' B=2nd,p,”!, and
Yzzn(_‘ﬁ__fli+ni+ e 4.?]&),
Py Py D3 P

we see that S| consists of numbers of the from A=ra—sB+vy, where » and s
are any non-negative integers. Since p,~' and p,? are rationally independent,
so also are « and B. Then S, and a fortiori S, is dense on the real line, and
the proof is complete.
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