ON NUCLEI OF n-ARY QUASIGROUPS

B. P. Alimpić

(Communicated May 19, 1978)

In this paper we consider a generalization of the concept of nucleus of a groupoid on the *n*-ary case. If (Q, \cdot) is a groupoid, the left nucleus N_l of (Q, \cdot) is the set of all a in Q such that $(\forall x, y \in Q)$ a(xy) = (ax)y. The middle nucleus N_m is similarly defined in terms of (xa)y = x(ay), and the right nucleus N_r in terms of (xy)a = x(ya). Obviously, (N_l, \cdot) , (N_m, \cdot) and (N_r, \cdot) are semigroups. If (Q, \cdot) is a quasigroup, they are groups.

Let (Q, ω) be an *n*-ary groupoid. The concept of nucleus may be generalized in different ways. So, H. H. Buchsteiner [2] and Murathudžaev [3] have introduced nuclei for *n*-ary quasigroup (Q, ω) as certain subsets of the set Q. We define nuclei of an *n*-ary groupoid (Q, ω) as some subsets of the set Q^{n-1} . This concept of nucleus is a generalization of left and right nuclei of the binary case.

We shall use the following notations. According to V. D. Belousov [1], the sequence $x_k x_{k+1} \cdots x_m$ will be denoted by x_k^m . If k > m, x_k^m will be considered empty, and if k = m, then x_k^m is the element x_k . By x_k^m we denote the sequence $x \cdots x$ where x is repeated k times.

Let a_1^{n-1} be an arbitrary element of Q^{n-1} , we shall denote it by \bar{a} . The mapping $L_i(\bar{a}): Q \to Q$ $(i=1, \ldots, n)$ defined by

$$xL_i(\bar{a}) = a_1^{i-1} x a_i^{n-1}$$

is called *i*-translation of the groupoid (Q, ω) by the sequence \bar{a} . Obviously, if (Q, ω) is an *n*-ary quasigroup, the mappings $L_i(\bar{a})$ are bijections.

Definition 1. Let (Q, ω) be an *n*-ary groupoid. The mapping $\lambda: Q \to Q$ with the property

(1)
$$(\forall x_1^n \in Q^n) x_1^n \omega \lambda = x_1 \lambda \cdots x_{i-1} \lambda x_i x_{i+1} \lambda \cdots x_n \lambda \omega$$

is called i-regular mapping of the n-ary groupoid (Q, ω) .

The set Λ_i of all *i*-regular mappings of (Q, ω) , with respect to the composition \cdot of mappings, is a monoid, and the set Π_i of all *i*-regular bijections is a group.

From the definition 1 it follows immediately.

Lemma 1. If (Q, ω) is a quasigroup, then $\Lambda_i = \Pi_i$. In other words, every i-regular mapping of a quasigroup is a bijection.

Proof. If \bar{a} is an arbitrary element of Q^{n-1} , from (1) we have

$$(\forall x \in Q) xL_i(\bar{a}) \lambda = xL_i(\bar{a}\lambda),$$

where

$$\tilde{a} \lambda = a_1 \lambda \cdot \cdot \cdot a_{n-1} \lambda$$
.

Since $L_i(\bar{a})$ and $L_i(\bar{a}\lambda)$ are bijections, from $\lambda = L_i(\bar{a}\lambda) L_i(\bar{a})^{-1}$ it follows that λ is a bijection, too.

Definition 2. Let (Q, ω) be an *n*-ary groupoid, and N_i $(i=1, \ldots, n)$ the set of all \bar{a} of Q^{n-1} such that the *i*-translation $L_i(\bar{a})$ is an *i*-regular mapping of (Q, ω) . The set N_i is called *i*-nucleus of (Q, ω) .

Now we define binary operations \circ_i , $i = 1, \ldots, n$, of the set Q^{n-1} by the equality

$$\bar{a} \circ_{i} \bar{b} = \bar{a} L_{i} (\bar{b})$$

where $\bar{a} L_i(\bar{b})$ denotes the sequence $a_1 L_i(\bar{b}) \cdots a_{n-1}(\bar{b})$. That is, for example if n=3, i=1: $ab \circ_1 cd = acd \omega bcd \omega$.

Lemma 2. The set N_i is a semigroup with respect to the operation δ_i . If λ is an arbitrary i-regular mapping of Q, and $\bar{a} \in N_i$, the sequence $\bar{a} \lambda$ belongs to N_i .

Proof. Let \bar{a} , $\bar{b} \in N_i$ and $\bar{x} = x_1^{i-1} x_{i+1}^n$. Then we have

$$x_{i} L_{i}(\bar{x}) L_{i}(\bar{a} \circ_{i} \bar{b}) = x_{i} L_{i}(\bar{x}) L_{i}(\bar{a} L_{i}(\bar{b})) \qquad \text{(by definition of } \circ_{i})$$

$$= x_{i} L_{i}(\bar{x}) L_{i}(\bar{a}) L_{i}(\bar{b}) \qquad \text{(since } \bar{b} \in N_{i})$$

$$= x_{i} L_{i}(\bar{x} L_{i}(\bar{a})) L_{i}(\bar{b}) \qquad \text{(since } \bar{a} \in N_{i})$$

$$= x_{i} L_{i}(\bar{x} L_{i}(\bar{a}) L_{i}(\bar{b})) \qquad \text{(since } \bar{b} \in N_{i})$$

$$= x_{i} L_{i}(\bar{x} L_{i}(\bar{a} L_{i}(\bar{b}))) \qquad \text{(since } \bar{b} \in N_{i})$$

$$= x_{i} L_{i}(\bar{x} L_{i}(\bar{a} L_{i}(\bar{b}))) \qquad \text{(by definition of } \circ_{i}).$$

Thus we obtain that $\vec{a} \circ_i \vec{b} \in N_i$.

Now we prove associativity of \circ_i . Let \bar{a} , \bar{b} , $\bar{c} \in N_i$. We have

$$\begin{split} (\bar{a} \circ_i \bar{b}) \circ_i \bar{c} &= \bar{a} \, L_i \, (\bar{b}) \circ_i \bar{c} & \text{(by definition of } \circ_i) \\ &= \bar{a} \, L_i \, (\bar{b}) \, L_i \, (\bar{c}) & \text{(by definition of } \circ_i) \\ &= \bar{a} \, L_i \, (\bar{b} \, L_i \, (\bar{c})) & \text{(since } \bar{c} \, \in \, N_i) \\ &= \bar{a} \, \bar{\circ}_i \, \bar{b}_i \, L_i \, (\bar{c}) & \text{(by definition of } \circ_i) \\ &= \bar{a} \, \bar{\circ}_i \, (\bar{b} \, \circ_i \, \bar{c}) & \text{(by definition of } \circ_i). \end{split}$$

If $\lambda \in \Lambda_i$ and $\bar{a} \in N_i$, we have

$$x_i L_i(\bar{x}) L_i(\bar{a} \lambda) = x_i L_i(\bar{x}) L_i(\bar{a}) \lambda$$

= $x_i L_i(\bar{x} L_i(\bar{a})) \lambda = x_i L_i(\bar{x} L_i(\bar{a})) = x_i L_i(x_i L_i(\bar{a})),$

thus $\bar{a} \lambda \in N_i$. This completes the proof of the lemma.

Let $\varphi: N_i \to \Lambda_i$ be the mapping introduced by

(2)
$$\varphi \, \tilde{a} = L_i \, (\tilde{a}).$$

By definition of f_i , we have $xL_i(\bar{a} \circ_i \bar{b}) = xL_i(\bar{a} L_i(\bar{b})) = xL_i(\bar{a}) L_i(\bar{b})$, for every x of Q, thus φ is a homomorphism.

Theorem 1. If (Q, ω) is an n-ary quasigroup, the nucleus N_i has the following properties:

- (i) For every $\bar{a} \in N_i$, the sequence $\bar{a} L_i^{-1}(\bar{a})$ is a right identity of (N_i, \circ_i)
- (ii) (N_i, \circ_i) is a regular semigroup.
- (iii) If $\varphi: N_i \to \Pi_i$ is the mapping defined by (2) the homomorphic image φN_i of N_i is the groupi.

Proof. (i) By lemma 1, we have $L_i^{-1}(\bar{a}) \in \Pi_i$ and by lemma 2, $\bar{a} L_i^{-1}(\bar{a}) \in N_i$. If

$$\bar{b} \in N_i, \ \bar{b} \circ_i \bar{a} L_i^{-1}(\bar{a}) = \bar{b} L_i(\bar{a} L_i^{-1}(\bar{a})) = \bar{b} L_i(\bar{a}) L_i^{-1}(\bar{a}) = \bar{b},$$

thus $\bar{a}L_i^{-1}(\bar{a})$ is a right identity of (N_i, \circ_i) .

(ii) For every $\bar{a} \in N_i$, we observe that $\bar{a} L_i^{-2}(\bar{a}) \circ_i \bar{a} = \bar{a} L_i^{-1}(\bar{a})$.

Thus, $\bar{a} \circ_i \bar{a} L_i^{-2}(\bar{a}) \circ_i \bar{a} = \bar{a} \circ_i \bar{a} L_i^{-1}(\bar{a}) = \bar{a}$, and the semigroup (N_i, \circ_i) is regular.

(iii) If
$$\bar{a} \in N_i$$
 and $\lambda \in \Pi_i$, we have $\bar{a} L_i^{-1}(\bar{a}) \lambda \in N_i$, and

$$\varphi\left(\tilde{a}\,L_{i}^{-1}\left(\bar{a}\right)\lambda\right)=\lambda,$$

hence $\varphi N_i = \Pi_i$.

If the *n*-ary groupoid (Q, ω) has an identity element e, we obtain the following two statements:

Lemma 3. The element e^{n-1} of Q^{n-1} is a right identity for each of $(N_i, \circ_i), i=1, \ldots, n$,

Proof. Indeed, by definition of \circ_i , if we put $\bar{e} = e^{n-1}$, we have $\bar{a} \circ_i \bar{e} = \bar{a} L_i(\bar{e}) = \bar{a}$, because e is an identity of (Q, ω) .

Lemma 4. The monoid (Λ_i, \cdot) is a homomorphic image of (N_i, \circ_i) , $i = 1, \ldots, n$.

Proof. Let $\varphi: N_i \to \Lambda_i$ be the mapping introduced by (2). Since φ is a homomorphism, it remains to prove that it is a surjection. If λ is an arbitrary *i*-regular mapping of (Q, ω) , the sequence $\bar{e} \lambda$ belongs to N_i , and $\varphi \bar{e} \lambda = \lambda$. Indeed, since $\lambda \in \Lambda_i$, we have $xL_i(\bar{e}\lambda) = xL_i(\bar{e})\lambda = x\lambda$. The lemma is proved. As a consequence, we have:

Theorem 2. If (Q, ω) is a quasigroup,

$$N_i \neq \emptyset \Leftrightarrow (\exists \overline{b} \in Q^{n-1}) (\forall x \in Q) x L_i(\overline{b}) = x.$$

Using a result from [1], we get the following statement.

Theorem 3. Let (Q, ω) be an n-ary quasigroup, with n>3. If, for every $i=1,\ldots,n$, $N_i=Q^{n-1}$, there exists a commutative group (Q, +) such that

- (i) $(\forall x \in Q) (n-2) x = 0$.
- (ii) $x_1^n \omega = x_1 + \cdots + x_n$.

Proof. If $Q^{n-1} = N_i$, the quasigroup (Q, ω) satisfies *i*-th Menger's law $x_i L_i(\bar{x}) L_i(\bar{y}) = \bar{x}_i L_i(\bar{x} L_i(\bar{y}))$.

By theorem 3.4. of [1], if, for n>3, an *n*-ary quasigroup (Q, ω) satisfies *i*-th Menger's law for every $i=1,\ldots,n$, there exists a commutative group (Q, +) such that (i) and (ii) hold. The theorem is proved.

REFERENCES

- [1] В. Д. Белоусов, п-арные квазигруппы, "Штиинца", Кишинев, 1972.
- [2] H. H. Buchsteiner, Zentren und Nuclei von n-Loops, Beiträge zur Algebra und Geometrie, 1, 1971, 85-105.
- [3] С. Муратхуджаев, Группы регулярных подстановок и ядра п-квазигрупп. Сети и квазигруппы. "Штиинца", Кишинев, 1976.