ON THE LIMITS OF THE FAMILIES OF LINDENBAUM ALGEBRAS

Slobodan T. Vujošević

(Communicated June 15, 1979)

A family of theories in the language of the first-order is treated. Correspondig families of Lindenbaum algebras are defined. The relations of the limits of these families are examined.

Let $\mathcal J$ be a theory in the language $\mathcal L$ of predicate calculus of the first order and let S be a set of formulas in $\mathcal L$. A binary relation \leqslant is defined in S, so that for all $p, q \in S$,

$$p \leq q$$
 if and only if \mathcal{I} , $p \vdash q$.

The relation \leq is preorder in S. If a binary relation \sim is defined so that for all $p, q \in S$,

$$p \sim q$$
 if and only if $p \leqslant q$ and $q \leqslant p$

then \sim is an equivalence relation on S. The relation \leqslant induces in S/\sim a partial order \leqslant (using the same designation), such that for all p^c , $q^c \in S/\sim$,

$$p^c \leqslant q^c$$
 if and only if $p \leqslant q$,

where p^c is an equivalence class of p according to \sim .

Further S/\sim is designated by P and it is assumed that $\mathbf{P}=\langle P,\leqslant \rangle$ is a directed partial order, i.e. for all $p,q\in P$, there exists $r\in P$ such that $p,q\leqslant r$. For every $p\in P$, \mathcal{T}_p is a deductive closure of $\mathcal{T}\cup\{p\}$. conservative extension of \mathcal{T} .

Lemma 1. If $p \leq q$, then $\mathcal{I}_p \supseteq \mathcal{I}_p$.

Proof. Trivial since $q \in \mathcal{F}_p$.

Let \mathbf{B}_p be a Lindenbaum algebra of theory \mathcal{T}_p , $p \in P$. If φ is a formula in the language \mathcal{L} then

$$\varphi_p = \{ \psi : \mathcal{T}_p | -\varphi \longleftrightarrow \psi \}$$

is an element of Lindenbaum algebra B_p . Since \mathcal{I}_p , $p \in P$ is a theory of the first-order, then the algebra B_p , $p \in P$ is a Boolean algebra.

For all $p, q \in P$, $p \le q$ a mapping $h_{pq}: \mathbf{B}_p \to \mathbf{B}_q$, such that $h_{pq}(\varphi_p) = \varphi_q$, is defined.

Lemma 2. For all $p, q \in P$, if $p \leq q$ then h_{pq} is an embedding.

Proof. Let $h_{pq}(\varphi_p) = h_{pq}(\psi_p)$, then $\mathcal{T}_q \vdash \varphi \leftrightarrow \psi$. But since $q \in \mathcal{T}_p$, then $\mathcal{T}_p \vdash \varphi \leftrightarrow \psi$, i.e. $\varphi_p = \psi_p$. If $\varphi_p \leqslant \psi_p$, then $\mathcal{T}_p \vdash \varphi \leftrightarrow \psi$, and if $\mathcal{T}_q \vdash \neg (\varphi \leftrightarrow \psi)$, then since $p \leqslant q$, $\mathcal{T}_p \vdash \neg (\varphi \leftrightarrow \psi)$, i.e. \mathcal{T}_p is an inconsistent theory, and lemma holds. If \mathcal{T}_p is consistent, then $\varphi_q \leqslant \psi_q$, i.e. h_{pq} is an embedding.

Since P is a set of formulas in the language \mathcal{L} , for all $p, q \in P$, $p \leqslant q$ there exists $\varphi_q \in B_q$, so that $\mathcal{T}_q \vdash \varphi \leftrightarrow p$. Let F be a filter in the algebra \mathbf{B}_q generated with φ_q . F induces a homomorphism $g_{qp}: \mathbf{B}_q \to \mathbf{B}_p$, for all $p \leqslant q$. So we have following.

Lemma 3. If $p \leq q$, then there exists an epimorphism h_{qp} of the algebra \mathbf{B}_q on to \mathbf{B}_p .

Proof. Let ψ_q^F be an element of $B_{q/F}$, where ψ is an arbitrary formula in the language \mathcal{L} , then for any formula σ , $\sigma_q \in \psi_q^F$ if and only if $\sigma_q \Leftrightarrow \psi_q \in F$, i.e. $(\sigma_q \Leftrightarrow \psi_q) \leqslant \varphi_q$. Since $\mathcal{T}_q \vdash \varphi \leftrightarrow p$ then $\mathcal{T}_q \vdash p \rightarrow (\sigma \leftrightarrow \psi)$. According to $p \leqslant q$, $\mathcal{T}_p \vdash \sigma \leftrightarrow \psi$ and finally $\psi_q^F = \psi_p$.

According the lemma 2, to the family of theories \mathcal{T}_p , $p \in P$ a family $\mathfrak{D} = \{\mathbf{B}_p, h_{pq}: p \leqslant q\}$ of Boolean algebras and embeddings is associated. It is obvious that \mathfrak{D} is a directed family in the category of Boolean algebras and embeddings [1], [2]. According the lemma 3, to the family \mathcal{T}_p , $p \in P$ is associated an inverse family $\mathcal{T} = \{\mathbf{B}_p, g_{pq}: p \leqslant q\}$ in the category of Boolean algebras and epimorphisms. The following theorem describes the relation of limits of these two families.

Theorem 1. If $\mathbf{B}_{\mathcal{J}}$ is a Lindenbaum algebra of the theory then $\lim \mathcal{J} \cong \mathbf{B}_{\mathcal{J}} \cong \lim \mathcal{D}$.

Proof. Let as show that $\mathbf{B}_{\mathcal{T}} \cong \lim \mathcal{T}$. Let B^{∞} be a domain of the algebra $\lim \mathcal{T}$. Recall that $B^{\infty} = \{f \in \prod_{p \in P} B_p : f(p) = g_{qp}f(q), p \leqslant q\}$. We should notice that for each $f \in B$, there exists a formula φ in the language \mathcal{L} so that $f = \langle \varphi_p : p \in P \rangle$. So, for an arbitrary $p \in P$, $f(p) \in B_p$ and $f(p) = \varphi_p$ for some formula φ in \mathcal{L} . Since \mathbf{P} is a directed partial order, so for any $q \in P$, there exist $r \in P$, such p, $q \leqslant r$. According to the definition of homomorphisms g_{qp} we have that $g_{rp}(\varphi_r) = \varphi_p$ and $g_{rq}(\varphi_r) = \varphi_q$, i.e. $f(q) = \varphi_q$ for every $q \in P$.

Define a mapping $g: \lim \mathcal{I} \to \mathbf{B}_{\mathcal{I}}$ such that $g(\langle \varphi_p : p \in P \rangle) = \hat{\varphi}$, where $\hat{\varphi} \in \mathcal{B}_{\mathcal{I}}$, i.e. $\hat{\varphi} = \{ \psi : \mathcal{I} \vdash \varphi \leftrightarrow \psi \}$. Obviously, g is onto. g is one to one, because if $g(\langle \varphi_p : p \in P \rangle) = g(\langle \psi_p : p \in P \rangle)$ then $\mathcal{I} \vdash \varphi \leftrightarrow \psi$, so for all $p \in P$, $\mathcal{I}_p \vdash \varphi \leftrightarrow \psi$, i.e. $\varphi_p = \psi_p$. Therefore $\langle \varphi_p : p \in P \rangle = \langle \psi_p : p \in P \rangle$.

g is a homomorphism, because if $\langle \varphi_p : p \in P \rangle \leqslant \langle \psi_p : p \in P \rangle$ then for all $p \in P$, $\varphi_p \leqslant \psi_p$. If $\hat{\varphi} \in B_{\mathcal{T}}$, let as define a mapping $g_p : B_{\mathcal{T}} \to B_p$, so that $g_p(\varphi) = \varphi_p$. Obviously g_p is a homomorphism so if $\hat{\varphi} \not = \hat{\psi}$, then $\varphi_p \not = \psi_q$, contradiction.

To prove that $\lim \mathcal{D} \cong \mathbf{B}_{\mathcal{T}}$, let B_{∞} be a domain of the algebra $\lim \mathcal{D}$. Recall that $B_{\infty} = B/\sim$, where $B = \bigcup_{p \in P} B_p \times \{p\}$, and \sim an equivalency on B defined such that for all $\langle a, p \rangle$, $\langle b, q \rangle \in B$, $\langle a, p \rangle \sim \langle b, q \rangle$ if there exists $r \in P$, p, $q \leqslant r$ and $h_{pr}(a) = h_{qr}(b)$.

Mappings $h_p: \mathbf{B}_p \to \lim_{\longrightarrow} \mathcal{D}$, $p \in P$ defined such that $h_p(\langle a, p \rangle) = [a, p]$, where [a, p] is an equivalence class according to \sim , are embeddings. Instead of $\langle a, p \rangle$, [a, p] we respectively write a_p , $[a_p]$.

Let as define the mapping $h: \lim \mathcal{D} \to \mathbf{B}_{\mathcal{T}}$, such that $h([\varphi_p]) = \hat{\varphi}$. h is onto, because for each formula φ in the language \mathcal{L} there exists $\varphi_p \in B_p$, such that $h([\varphi_p]) = \hat{\varphi}$. Let $h([\varphi_p]) = h([\psi_q])$, p, $q \in P$, then $\mathcal{T} \models \varphi \leftrightarrow \psi$, so $\mathcal{T}_p \models \varphi \leftrightarrow \psi$, and $\mathcal{T}_q \models \varphi \leftrightarrow \psi$. If $r \in P$ such that p, $q \leqslant r$, then $h_{pr}(\varphi_p) = h_{qk}(\varphi_q)$, i.e. $\varphi_p \sim \varphi_q$, so h is one to one.

Let $[\varphi_p] \leq [\psi_q]$, then there exists $k \in P$, $p, q \leq k$, so that $\varphi_k \leq \psi_k$. Let $\overline{h}_k : \mathbf{B}_k \to \mathbf{B}_{\mathcal{T}}$ so that $\overline{h}_k (\varphi_k) = \hat{\varphi}$. \overline{h}_k is an embedding because, if $\hat{\varphi} = \hat{\psi}$ then $\mathcal{T} \models \varphi \leftrightarrow \psi$, i.e. $\mathcal{T}_k \models \varphi \leftrightarrow \psi$, so $\varphi_k = \psi_k$ and \overline{h}_k is one to one. If $\varphi_k \leq \psi_k$, then $\mathcal{T}_k \models \varphi \to \psi$, and so if $\mathcal{T} \models \neg \neg \neg \psi$, then $\mathcal{T}_k \models \neg \neg \psi$ and \mathcal{T}_k is an inconsistent theory, so the theorem trivially holds. If \mathcal{T}_k is consistent then $\mathcal{T} \models \varphi \to \psi$, i.e $\hat{\varphi} \leq \psi$ and h_k is an embedding. Therefore h is a homomorphism and the theorem is proved.

Further are considered the families $\overline{\mathfrak{D}}$, $\overline{\mathcal{I}}$ dual to the families \mathfrak{D} , \mathcal{I} . More precisely, the relation \geqslant dual to the relation \leqslant is considered. In that way the direct family \mathfrak{D} is transmitted in an inverse family $\overline{\mathfrak{D}} = \{\mathbf{B}_p, h_{pq}: p \geqslant q\}$ of Boolean algebras and embeddings. Similarly, the family \mathcal{I} is transmitted in to a direct family $\overline{\mathcal{I}} = \{\mathbf{B}_p, g_{qp}: p \geqslant q\}$ of Boolean algebras and epimorphisms. The following theorem is investigating the relation of limits of dual families.

Let $\mathcal{T}_p = \bigcup_{p \in P} \mathcal{T}_p$ and let \mathbf{B}_p be a Lindenbaum algebra of the theory \mathcal{T}_p .

Theorem 2. $\lim \overline{\mathfrak{D}} \cong \mathbf{B}_P \cong \lim \overline{\mathcal{J}}$.

Proof. Let as prove that $\mathbf{B}_{P} \cong \lim_{\longrightarrow} \overline{\mathcal{I}}$. Let $g: \lim_{\longrightarrow} \mathcal{I} \to \mathbf{B}_{P}$ defined by $g([\varphi_{p}]) = \varphi_{P}$. It is obvious that for any formula φ in the language \mathcal{L} there exists $p \in P$ so that $\varphi_{p} \in B_{p}$, i.e. g is onto. Let $g([\varphi_{p}]) = g([\psi_{p}])$, $p, q \in P$.

Hence $\mathcal{T}_P \vdash \varphi \leftrightarrow \psi$. Since the proof for $\varphi \leftrightarrow \psi$ in the theory \mathcal{T}_P is final, there exists a final sequence $p_1, \ldots, p_n \in P$ so that $\mathcal{T}, p_1, \ldots, p_n \vdash \varphi \leftrightarrow \psi$. Let $r \in P$ so that $p_1, \ldots, p_n \leqslant r$, such r exists since \mathbf{P} is directed, and let $g_r : \mathbf{B}_r \to \mathbf{B}_P$, be a mapping defined so that $g_r (\varphi_r) = \varphi_P$. We should notice that g_r is an embedding, because if $\varphi_r \neq \psi_r$ and $\varphi_P = \psi_P$ then $\mathcal{T}_P \vdash \varphi \leftrightarrow \psi$, so $\mathcal{T}, p_1, \ldots, p_n \vdash \varphi \leftrightarrow \psi$. But $\mathcal{T}_r \vdash \mathcal{T}(\varphi \leftrightarrow \psi)$ and $p_1, \ldots, p_n \leqslant r$, so that $\mathcal{T}, p_1, \ldots, p_n \vdash \mathcal{T}(\varphi \leftrightarrow \psi)$ i.e \mathcal{T}_P is an inconsistent theory and theorem trivially holds. If \mathcal{T}_P is consistent then $\varphi_P \neq \psi_P$, so g_r is one to one, and hence g is one to one. It is obvious that g_r is a homomorphism, hence g is a homomorphism too.

To prove $B_P \cong \lim_{p \to \infty} \overline{\mathcal{D}}$, we have to notice that the domain \overline{B}^{∞} of the algebra $\lim_{p \to \infty} \overline{\mathcal{D}}$, $B^{\infty} = \{ f \in \prod_{p \in P} B_p : f(q) = h_{pq} f(p), p \geqslant q \}$. Every $f \in \overline{B}^{\infty}$ is of the form $\langle \varphi_p : p \in P \rangle$, where φ is a formula in the language \mathcal{L} . Further on, we should procede in essentially the same way as in the proof of the first part of Theorem 1.

REFERENCES

^[1] Sacks G. E., Saturated Model Theory, Reading, Massa. 1972.

^[2] Vujošević S. T., On Boolean valued models, master thesis, Beograd, 1979 (in serbocroatian).