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In this paper n-ary w-groupoids are considered. Some properties of par-
tial isotopy of m-groupoids and quasigroups are given and proper m-groupoids
are investigated. A theorem which gives necessary and suffficient conditions for
the completion of one kind of partial latin hyper-cubes is proved, these condi-
tions are necessary and sufficient for a w-groupoid to be proper. Theorems
which establish connections between isotopy and partial isotopy are given.

Binary m-groupoids and w-nets, which appeared in connection with geo-
metrical interpretation of closure conditions which correspond to identities with
parameters, were considered in [1].

We shall use notations and terminology from [3].

Definition 1. An m-ary groupoid (G, 4) is called an nr-ary m-grou-
poid (n-w-groupoid) if and only if there exists (@))&G* such that for every
ic{l,2,...,n} the following conditions hold:

(i) If A(a'i—l, u, a?’+1)=A(ai'1, v, aiy1) then u=v.

@) If 5 xP)sE@Y alhy), uta;, v£a,
then from A (xi ", u, xJ ) =A(x", v, x7.1) follows u=v.

The ordered n-tuple (a7) we call marked and the element A (a})=a, we
call a knot element.

In the sequel we shall consider only finite n-w-groupoids.

The elements 4 (ai”’, x, aj.1), xEG, belong to one line of the Cayley
hyper-cube of n-w-groupoid A with marked n-tuple (a}) and this line we call
marked. The n-m-groupoid 4 has n marked lines, the knot element a, appears
in the intersection of these lines.

If in the Cayley hyper-cube of the n-m-groupoid 4 we delete elements in
marked lines, we get a partial hyper-cube which we call the remainder. of the
given Cayley hyper-cube for the marked n-tuple (a7). From Definition 1, (ii),
it follows that the partial hyper-cube is latin. s
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To illustrate these definitions we give examples of finite #-m-groupoids
for n=2, 3 and state some properties of Cayley table and Cayley cube of
these m-groupoids.

|1234
1{1 4 2 3
204 11 2
301 2 3 4
412 3 41

This is a Cayley table of a binary m-groupoid of order 4 in which (3,2)
is a marked pair. The third row and the second column of the table are per-
mutations of the set on which the w-groupoid is defined (this follows from
Definition 1, (i)). If in this table we delete this row and column we get 3 x 3
table, the remainder of the given Cayley table for the marked pair (3,2). From
Definition 1. (ii), it folows that no element can appear twice in any row or
column of ‘the remainder, hence, the remainder is a partial latin square. If
an element appears twice in a row (column) of the complete Cayley
table, then it appears once in the intersection of this row (column) and the
marked column (row). ‘ ; -

Of cource, a w-groupoid can have more than one marked pair. In this
example (3,3), (1,2) and (1,3) are al:o marked pairs. '

We giwe also an example of a ternary w-groupoid:

E-N

4,]1 23 4 4f1 234 4,01 2 3 4 4|1 23

1312 1/4@23 1{P®1 4 1|2@41°
214123 21234 212141 213 41 2
311234 3(23 41 3|3[2)/12 3[41:23
412 341 403 412 4]4(4/23 4|1 23 4

s
/

This 3-m-groupoid A is represented by four binary operations A4;(x;, ¥)=
=A@, x, ¥), i=1, 2, 3, 4. The marked triple is (3, 1, 2). Elements in circ-
les form marked 1-line® and framed elements in- table -for 4, form marked
2-line and marked 3-line.

An n-ary quasigroup (Q, 4) is an m-ary m-groupoid in which every or-
dered n-tuple of elements from Q is marked.

A natgral question is what is the relation between quasigroups and
n-groupoids? One way to obtain quasig:oup; fiom some =-groupoids is to make
suitable permutations of elements in maiked lines. For example, if we consider
the 3-m-groupoid from the preceeding example and instead of the circled ele-
elements 1, 2, 3, 4 we put the elements 4, 1, 2, 3 respectively, and in 4;
table instead of the first row (2, 3, 1, 4) we put (1, 2, 3, 4), instead of the

*) In the Cayley hyper-cube of an n-m-groupoid A the line which consists of elements
A® i—l}, x, b},1), x€G, we call i-line, For n=2 ¢olumns of the Cayley table are’ 1-lines
and rows are 2-lines. : - s ] B
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second column (3, 1, 2, 4) we put (2, 3, 4, 1), we shall get a ternary qua~
sigroup. ‘
This suggesta the following defmmon

Def 1nit10n 2. Let (G, 4) be an n-n-groupoid with the marked or-
dered n-tuple (al). An n-groupoid @, B) is partially isotopic with respect to
{a1), to the n-m-groupoid (G, 4) if and only if for every i&{l, 2,..., ré}

-

- . i1
o; A (@1, x;, afyn), for (x1, xip)=(a1 , ait),

B(x7) =
A(x7), for other values of (x7),

where «,, i=1, 2, ..., n are prermutations of the set G such that

Ay Gy=Ryty== =+ » =, &y,

and a, is the knot element (4 (a7)=aq,) of the n-m-groupoid (G, A).
That (G, B) is partially isotopic to (G, 4) with respect to (a))EG" we
shall denote by B=4F, P=(ai, ai). '

- From Definition 2 we get that the partzal isotopy has the following
propeities:

1° Partial isotope of an n-7:-group01d is also an n—wgroupmd These two
n-re-groupoids have the same marked n-tuples
2° A partial isotopy with respect to one fixed marked n-zr-tup;e (@D 13
an equivalence relation in the set of all n-n-groupoids with the marked n-tup-
: ie (a1 defined on the same nonempty tet G.

If we cosider partial isotopies with re:pect to different marked n-tuples
theni transitivity need not hold.

3° If two n-quasigroups are partiaiy isotopic then they coincide.

Definition 3. An n-x-groupoid with the marked n-tuple (a}) which
is partially isotopic with respect to (¢7) to an n-quasigroup is called proper

with respect to (aj).

A criterion which gives necessary and sufficient conditions for an

n-m-groupoid to be proper is given by the following theorem. This theorem

also gives necessary and sufficient conditions for a completion of one kind of
-partlai latin hyper—cubes

Theorem 1. Let (G, A) be an n-ary w-groupoid of order m wzth mar-
ked n-tuple (a}) and let N(x) denotes the number of appearances of element
XEG in the remainder for (ay) of the Cayley hyper-cube of this n-m-groupoid.
The n-n-groupoid (G, A) is proper with respect to-(ay) if and only if there exists
an element x,& G such that N(x)=m""1—~1 and for every y <G, y#x,,
N (y) mh1—p,
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-+ Proof. Suppose.that there exists an element x,EG such that ‘N (x)=
=m* 11 and for every yEG, y#x, N(y)=m""-n. We shail pxove that
then (G, A) is partially isotopic to an mn-quasigroup. ,

If in the Cayley hyper-cube of the given n-m-groupoid A we ée}ete ele-
ments in the marked lines, we -get a partial latin hyper-cube. We shall prove
that this partial latin hyper-cube can be completed to n-dimensional latin
hyper-cube of order m (1. e. Cauley hyper-cube of an n-quasigroup of order m).

‘This completion we shall perform in the following way. Fifst, in the
intersection of the marked lines (whose cells are now empty) we put the
element x,. ‘

Now we consider n(m— 1) binary groupoids which are obtained from .4
fixing all but n—2 variables in the following way:

(D(x »= A(pys %, ¥, Qs v v'v s a,), P1€G, p’};éai,
Ag) (x, »)=A(x, Dys Vs Gqs «vv s Q) P,EG, pysa,,

3 . .
(i) Aés}(x: y)mA(x, Vs D3y Qas vvv sy Gy)s P3EG, p3?éa3,
Agi)(xs y)mA(}C, Yy Qgs ovv s Qi gy Pis Bipqs ooy an)s .
p,GG P;#a,, i" >’ n.

After deleting all elements in the marked lines in Caery hyper-cube
of 4, the Cayley table of each of the binary groupoids (1) becomes a partial
latin square with exactly one cell empty. It is not difficult to see that every
such partial latin square can be uniquely completed to latin square of order m
(i. e. Cayley table of a binary quasigroup). So, in the empty cell of each of
the:ze partial latin squares we put the element which completm partial latin -
square to latin square.

Now we have filled all empty cells,

We shall prove that in this way every other pamal Jatin square wh1ch
had exactly one cell empty (obtained from. 4 fixing n—2- vanable) is comp-
leted to 2 latin square. Let

(2) A(x:y>=14(a1: “ee saks Xy O ys s G153 Vs Giigs e 5az‘-1vpi’ Qiggsves Gy

be such a binary groupoid whose Cayley table had exactly one cell empty.
Groupoids
(z}

(X, y) A(x Vs ass";'3 a—U PDis 4 1+1"~-s )
and - , ' :

E(X, y)'-‘—‘A(}C, az% LRI ] aj_l) ?, Fplr v s a’i_;} pfa\ai..;‘ls‘."ve s “zz):
have one common line which contained empty cell, which means that the ele-
ment which we have put in that cell to complete partial groupoid obtained from
A(’) to a quasigroup, also completes the partial proupoid obtained from 4 - to
a-quasigroup. The same is true for groupoids 4 and 4, and since the empty
cell was common for all three groupoids we get that when we. completed . the
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partial groupoid obtained from A9 to a quasigroup, then the partial groupoid
obtained from A was also completed to a quasigroup. ' '

We are going to prove that this completion gives a hyper-cube of or-
der m which is latin, i.e. a Cayley hyper-cube of an n-quasigroup. The n-ary
groupoid defined by this Cayley hyper-cube we cenote by B and its lines ob-
tained from the marked lines of the n-m-groupoid 4 we shal al:o call marked.

Partial latin hyper-cube has m"~!—1 1-lines. Since N (x))=m""'—1 we
get that x, appears exactly once in every 1-line of partial latin hyper-cube.
The same is true for i-lines, i=2, 3,..., = '

This means that x; appears in every row and every column of partial
latin squares obtained from groupoids (1), hence every element by which the:e
partial latin squares were completed was different from x,. x, was put in the
intersection of marked lines, thus in the Cauley hyper-cube of B x, appears
exactly m"1 times, in every i-line, i=1, 2, ..., n exactly once.

In the partial latin hyper-cube every line with exactly one empty cell
belongs to a Cayley table of one binary groupoid (2). Thus, in the Cayley
hyper-cube of B in every line which is not marked no element appears twice.

. Now we shall prove that also in every marked line there is no element
which appears twice.

Let us suppose the contary, i.e. an element y,&G appears at least twice
in one marked line, let’s say in the marked 1-line. y, apears m"~!-n times in
the partial latin hyper-cube and at least twice in the marked I-line, thus in
the partial latin hyper-cube to which the marked 1-line is added y, appears
" at least m*1—n+2 times.

The partial latin hyper-cube has m"-!—1 2-lines, and among these lines
at least m"~!—n+2 contain one y,, so in the partial latin hyper-cube there
exist at most n-3 2-lines without y,. This means that y, can appear in at
most #-3 marked i-lines, i=3, 4, ..., n. But there are n-2 these marked lines,
so at least one of these marked lines is without y,. Suppose that the marked
3-line is without y,.

The Cayley hyper-cube of B has m"~! 3-lines, in the marked 3-line there
is no y,, in every other 3-line y, appears once, thus in the whole Cayley hy-
per-cube of B y, appears m"~'—1 times.

Since y, in the Cayley hyper-cube of B appears m"~!'—1 times there
exists an element z,cG which in this hyper-cube appears at least mrt41
times (then z,#x,). We have n marked lines and N (z,) =m"~'—n, this means
that in the » marked lines z, appears at least n+1 times, so z, appears twice
in one marked line. )

From here, in the same way as we have done it for y,, we get that z,
appears in the Cayley-hyper-cube of B m"~!--1 times, which is the contra-
diction. ;

So, we have proved that no element can appear twice in any line of
the Cayley hyper-cube of the finite n-groupoid B which means that B is an
n-quasigroup. From the way we obtained. B from A it follows that the n-qua-
sigroup B is partially isotopic to the n-w-groupoid A. a
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This proves one half of the theorem, the other half is obvious, so the
theorem is proved.

Remark 1. The proof of the preceeding theorem is given in the most
general form because the proof of the theorem for n=3, 4 does not require
all the arguments which are necessary in the general case.

Remark 2. This theorem generalizes to n-dimensional case one spe-
cial cace of Ryser’s theorem on embedding latin rectangles in latin squares [2].

Now we give an example of a ternary m-groupcid 4 of order 4 with
the marked triple (4, 1, 1) which is not proper (which can be established
wsing Theorem 1).

401 234 4|1 234 4,01 2 3 4 4,01 2 3 4
11234 1{2342 13123 1]l4213
212341 203214 2|1 432 2|/1123
313412 3/41 23 3|2341 332734
414123 4]2 431 4(3 214 4|23 42

We give now two theorems about ordinary isotopy and partial isotopy.
Proofs of these theorems are omited. since they are analogous to the proofs
of the corresponding theorems in binary case.

Theorem 2. Let (G, A) be an n-n-groupoid with marked n-tuple (a%).
If an n-groupoid (G, B) is isotopic to the n-m-groupoid (G, A) B=AT, T=
=(ai, B), then B is an n-n-groupoid with marked n-tuple ({oc,-“'aj}};l).

Theorem 3. Let a proper n-m-groupoid with marked n-tuple (a}) be
isotopic to a proper n-n-grouppid (G, B) with marked n-tuple (bY), A= BT, where
T=(o1, $). If (G, A) is an"h-quasigroup which is partialy isotopic to (G, A),
A4,=AR, R=(ai, aY) and (G, B)) is an n-quasigroup partially isotopic to (G, B),
B, =BS, S=(B1, bY) then the n-quasigroups A, and B, are isotopic, A,= Bj.
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