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Introduction

- In this paper we consider the saturation properties for a family of
operators of convolution type

o Kf@)= [ 7=k, @)di=(F2k) ()

where f is a real locally integrable function on R and, for a given k&L,
k,(x)=pk(px) (¢ is a positive parameter tending to infinity). The family of
operators (1) is usually called a smguiar integral and the function k kernel
(of the singular integral),

The (global) saturation theorem for singular integrals (1) is well known
in the spaces L?, 1<{p<<co, [3]. The object of the present paper is to obtain
generalizations of this result in two divections.

First, in Section 2 we prove the global saturation theorem in some
spaces of temperate functions (Definition 1.1), which are larger than the L7
spaces, and then in Section 3 we obtain the corresponding local result. ‘

As we are dealing with convoltion integrals, the main tool in the proofs
is the Fourier transform method. However, even in the cpaces L?, p>2,
considerable difficulties arise from the fact that the Fourier transform cannot be
defined as a function,

Several ‘authors [2, 5, 6] have developed different methods for surmounting
these difficulties (in the spaces L?, 1< p<<). We chall present another
slightly diffe;ent method, which :eems to be appropriate even in the spaces
of temperate functions and for global as well as for local results.
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1. Temperate functions

In this cection we prove some preliminary recults on products. and
convolutions of some special temperate ditribution®. In all the distribution
theoretic notions we follow L. Schwartz [8] except that infinitely differentiable
function: on R will be short'y called smooth and functions which are bounded
by | x|, x—oo, for all r>0, rapidly decreasing at infinity. Thus, 9 (a, b)
will be the pace of smooth functions with compact support in (a, b) and %
the space of smooth rapidly decreasing functions, equipped with the usual
topologie:. &', the dual of ¥, is the space of temperate di.tributions.

We shall be particularly concened with the regular di:tribution: from %"
(i.e. di.tributions which can be identified with locally integrable functions)
and we shall call such distributions temperate functions.

Definition 1.1. Let «a>0. F, will be the space of all locally integrable
functions f such that

@ Il [ LG e,

Obviously, F, under the norm (2) is a Banach space; «<@ implies
that F,C F,; F,C .9 for every a>0, moreover \J F,=F, the space of all

a>0
temperate functions from %,

As already mentioned, the main tool in the proofs will be the Fourier
tran-form me.hod. In particular, we shall make ue of the following well
known property: The Fourier tran form of the convolution product is the
(pointwise) product of the tranisforms

3) (fik)* =f- k.

The interpretation of equation (3), which is immediate in the cae
when fCLr, 1<p<2, kL', is not as eay if we let f be an arbitrary tempe-
rate distribution. Indeed, it is well known [8] that in this ca:e k has to sati.fy
a rather re trictive condition: (1 +x2)72k has to be bounded, for eve.y r>0,

This condition in tun vields the smoo:hness of the Fourier transform k.

On the other hand, the Fourier t an form method leads to the following
characterization of a function f belonging to the saturation class

4 g=\x[*f
(where g is chosen appropriately).

We are led to the same problem as before (3): temperate distributions

can, in general, be multiplied only by smooth functions, and |x|* or lAc(x) are
obviously not smooth.
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This prob!em was solved, for the spaces L?, by E. Gorlich [5] who
replaced |x|* in (4) by the smooth function (1 +x2)“/2 having the same: -
behaviour at infinty (and thus yie'ding the same saturaton class), or by
J. Boman [2] who proved that functions from L? may be convolved with.
temperate distributions which are Fourier transforms of homogeneous fun-
ctions (| x |*).

We shall proceed somewhat differently and prove that a temperate
function f may be convolved wth distributions having a prescribed (finite):
rate of decrease at infinity (Proposition 1.1) or, which is essentially the same,
" that its Fourier transform}‘\ may be multipl‘ed by functions having only a.
f.nite number of derivatives (P.oposition 1.4). This will enable us to treat
both (3) and (4) in a similar way (Corollaries 1.1 and 1.2).

Before proceeding, we cite the following characterization of bounded
distributions from [8]. A bo inded distribution is defined as a continuous linear
functional on the space Dri, which consists of smooth functions belonging
together with all their derivatives to L. '

Lemma 1.1. [8, I p. 95} Let T kbe a temperate distribution.. Then
(14+x%2T is a bounded distribution for some «>0, if and only if (1 +x%)**
(T+9) (x) is a bounded function, for all &%

Proposition L1. Let a>0. Let TES" be such that (1+x2T is
a bounded distribution. Then _the comvolution fxTE S is well defined, for
every f=F,. : ,

Proof. For o=, % it follows by the definition of convolutionk 8

(Tnb 0y = (T o @G0 > = (L3, ff+1 o {for @1 ).

Since (1 +x?)%2T is a bounded distribution, all we have to prove is that
(L xR, <p(x+t))e%p But this is easily ‘established using the fact
that fC F,. ' ‘ ‘

Propoéition 1.2. Let f&F,, a>0, and let { be a temperate function

such that (1 +x2)°‘/2@ is a bounded distribution. Then the product - f is well
defined as a temperate distribution.

Proof Note that if ¢ is smooth then ¢ satisfies the assumption of the
Proposition (moreover (1 +x2)°‘/2@ is a bounded distribution for every a«>0).
" In this case the product §-f exists [8] and for every ¢& %

G)  Wfed=(h ey = o= [ £ ()t ().
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On the other hand, even 1f ¢ is not smooth, but only satisfies the
.assumptions of the Proposition, we can show that the integral in (5) is
.absolutely convergent and then define the product by the following equation

® Cehey= [ @) 0dry e
To ‘this end we first notice that
o 0= @

.and that from the fact a +x2)%2{ is a bounded distribution it follows by
Lemma 1.1
®) - sup L+ (G 9 (W ]<C

Thus we have

SR CI

(1 + x2y2

— 00

| [roe @a k:gg (1439 o)~ ()]

=sup @ +x2)“f2 1 (4} 2 9) () ] [ F]l<C

by (7) and (8), ‘establishing (6). We may proceed in a similar fashion to show
-that this product is separately continuous

Proposition 1.3. Let oc>0 and let [ and { satisfy the assumptions
of Proposition 1.2. Then

{9) | )= -.f.

Proof. According to Propositions 1.1 and 1.2 both sides in (9) are
well defined. We thus have, for every o= Y

G, @ = *fi 9= o Gx+d=(f, xo)=
={fs (o) "> ={4-f @)

-ibyd the definition of Fourier transform, convolution and product.‘ '

Corollary L1. Let kCL' be such that (1+x)2(k(x)|<C, for
some a>1. Then, according to Proposition 1.1 the convolution k = f is well defined,
Jor f&F,, and according to Proposition 1.3

(k*f) =k-f.

Moreover, it is easzly checked that k = ch ([i}) and, if we set k, (x)w
=pk(px), that k,=f tends to f in F,, p—>oc0, which means that the operator
{1) defines an approximation process in F,-(a>1 is necessary for the validity
of the last assertion).
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Further let us consider the function {,(x)=|x|*, «>0. The Fourier
transform of this function is the temperate distribution given by the regulari-
sation of the following function

Ix |-x—1

oo
27 (— kil
[(—a)cos 5

(10)

“([4], p. 173). Denote the distribution (10) by y,, that is to say on:q:'a'
It is easily seen that (10) is meaningful for «>>€3 and is indeed an entire
function of « [4].

\; Corollary 1.2. Let ,(x)=|x|%, «>0 and y,=,. Then for f<F,
it follows

+1

(11) (f*Xa)Azq)u'.i"

: a+1
Indeed it is readily seen from (10) that (1+x?) 2 y, is a bounded distri-
bution so that Proposition 1.3 may be applied to get (11).

Definition1.2. Let y, be defined by (10) and let f&F,, . The distri-
bution fy,&. % is called the «xth Riesz derivative of f and is denoted
by f© or DU,

From (11) it follows that g& . %’ is the «th Riesz derivative of the
function fEF,,, if and only if '

(12 | g=|xF

As already mentioned, relations of this type play a central role in
characterizations of the saturation class and this is the reason Riesz derivative
has to be introduced (cf. [3]) instead of the more usual Riemann-Liouville

(for which the corresponding ,,Fourier transform equation* is g = (iv)* f). However,
in contrast to the Riemann-Liouville derivative, which is generated by the

kernel x7*"' supported in (0, ) and thus may be applied to arbitrary
temperate distributions (supported in (0, o)), the Riesz derivative, generated
by the kernel [x|-*~! (with an unbounded support), can be applied only to
distributions having a prescribed order of growth at infinity. This produces
the following discrepancy; for a function f<F,, however ,,good*. its « th
Riesz derivative may be, the Bth derivative, f<«, cannot be defined by f*y,,
a1

(1 +x%) 2 y, being unbounded. Still, this inconveniance is a result of the
behaviour at infinity of the function f and not of its smoothess properties,
so that it can be improved by considering the local Riesz derivatives (cf.
Section 3). L

Further we shall have to consider measures from %"
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Definition 1.2. Let «>0. M, will be the space of all functions g
of locally bounded variation on R such that

g™ _

¥ HM“= 1+ 2oy

— oo

‘Obviously, every measure from %’ may be looked at as-an element
of U M,. Besides, F,CM, (f we ident.fy those measures g& M, which are

a>0 .
absolutely continuous with their derivatives). Let us note the following fact,

of which we shall make constant use: M, is the conjugate Banach space of
(13) C.={p€C @ | lim (1+x2)%2¢ (x)=0}

with the norm

Hcpllcffglg (1+x2)2 | @ (x) .

We are now in position to prove the following

Proposition 1.4. Let the «th Riesz derivative of the temperate function
{ be a temperate measure. Then, for fEF,, the product {-f is well defined in %"

Proof, According to Proposition 1.2 it is enough to show that
(1+x»)*%2{ is a bounded distribution.

To this end let us first prove the following simple statement. If T is a
temperate measure, then its Fourier transform 7" is a bounded distribution.

Indeed, for u&<Dr: we have by definition

oo

(14 (T, uy=<(T, uy = [ u(x)dT(x).

- 00

Now, for uEPp, u is a continuous rapidly decreasing function and T being
an element of M, (for some B>0) it follows that the integral in (14) is
convergent, whence it is readily deduced, by using standard arguments,

that 7 is a bounded distribution. ‘

Turn'ng to the proof of the Proposition, let the temperate measure . be '
the «th R.ezs derivative of ¢, i.e.

p=|v[*d,
by (12). It follows now from the preceding that |v}°‘fp is a bounded distribu-
tion, and this is easily proved to be equivalent with the bouncedness of the
distribution (1 -+ x%)*2{, which completes the proof of the Proposition.

We finally formulate several simple propositions which essentially assert
that smooth functions from F, have Riesz derivatives.
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Lemma 1.2. Let cpE oF. Then for every o>0 the o'th Rzesz derivative

is the con:maous Junction gtven by
«w

@)= [ [v[*o@)er=dv.

-0

: a1
Furthermore ¢ satisfies the condition (1+x%) 2 | (x)|<C.
The first assertion of the Lemma follows from (12}, and the second by
Lemma 1.1, in view of the definition of Riesz derivative ¢/ =g x,.

Lemma 1.3. Let f€F,,,, «>0 and @GQ? Then f+o has an oth
Riesz derivative' in F,,, and

13 (f* @) (x) = (f+ o) (x)

Indeed, since by Lemma 1.2 and Corollary 1.1 f*@&F,,, the assertion
follows by applymng the Fourier transfom to (15).

Lemma 1.4. Let f, g F,,,, a>0. Then

Jr®euxyde= [ (g dx, V&S

if and only if
g=|x|*f:
Since by Corollary 1.2 the product |x|* 7 is- well defined, the assertion
follows by evaluation of the Fouriér transform of g.

2. Global saturation theorem

In this section we prove a saturation theorem for singular integrals (1)
in the spaces F, Conditions (S) and (M) in Theorem 2.1 are the standard
ones required for (global) saturation in the spaces L? [3]. The condition

at1
(1+x?) 2 |k(x)|<C makes the operator applicable to the space F,,, and is,
as we shall see later, necessary for local saturation ‘even in the spaces L7,

The elements of the saturation class will be " characterized by the fact
that their R esz derivatives are temperate measues in the very same way
the saturation class in L' was characterized by the existence of BV Riesz
derivatives. :

Theorem 2.1. Let «>0. Let fEF,, f'or some B, 1<B<a+1, and let the
kernel k of the singular integral (1) satisfy the following conditions

® 1im’i@———«c>o
w0 |V
™) 3reL 7\()3593—111,

®) (1L+x?2k(x)|<C, (sz)sf2 %(X)1<C
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Then

@) If-Kfllgo= (¢7%), p—>0 = f is a polynomial of degree <B—1,

() [|f-K.flle=0("", p—> & f has an «th Riesz derivative in M,.

Remark. A similar statement is valid in the spaces F, 0<f<],
except that § in condition (B) has to be replaced by B+ 1 (otherwise the
singular integral (1) might even be non convergent in F, —¢f. Corollary 1.1).
But since we are mostly interested in operators which satisfy (B) with p=o+ 1
(Section 3), this restriction is not very important. Besides, instead of F,,
0<<B<1, we usually consider their subspaces L?, 1<{p< oo, for which condi~
tion (B) is indeed superfluous. ‘ o

In the proof of the Theorem we shall have need of the foliowing lemma.

Lemma 2.1. Let f and k satisfy the hypotheses of Theorem 2.1 and
let o€ 5. Then

-]

a i [ S (0% (K, @ (¥) — @ (x)) — ¢ (x)) dx = 0.

—0

Proof. We first notice that for every p
amn o sup (L3P (Ko 0 () — ¢ (1) — 9 (1) [ <C.
xER- ;

Indeed, since K,¢(x)=(p*k,)(x) and o (x) = (p*x,) (%), (17) follows by
Lemma 1.1. From (17) it follows that the integral in (16) is absolutely
convergent, in view of f&F,. '

For a given ¢>0, take M >0 such that

(18) f 6" (K, 0 ()0 () =) ()] d <=
jx|>M
"For this M we have
M

[ 17 e (K, (%) — 9 (%)) — o4 ()] | dx <
—M
2\8/2 | & o r |f(x)t
< sp (1297 | (K, 9.0) 9 () — ot ()] f O

A9 < s (1 + MY sup 16K, p()~ 9() ~ ¢ () 1<§

if o is large enough. Indeed, it is well known that, when the kernel k of the
singular integral (K,) satisfies the conditions (S) and (M), we have for every
0. .

sup [0 (K, (1)~ (x)) = ¢ ()| >0, p—>c0.
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" Thus (16) follows by adding (18) and (19), which completes the proof
of the Lemma,

Proof of the Tizeorem. First of all observe that for f and k satisfying
the assumptions of the Theorem we have - |

f F@) K9 (x)dx= f K,f(x) o (x)dx, wey

- so that by Lemma 2 1. we obtain

. gt

_(20) lim g [ (K, £ () —f () () de = f ol (x) £ (x) dx.

[63) From the assumption p o K f— flle=0(1), p—>, the weak convergence-
follows, thus : ,

lim j(&f(x)—~f(x)><p<x)dx 0, Ve,

p»roo

. Compairing with (20) we get

[ 6@ @) () dx=0, Vo& P,

- which by Lemma 1.4. means |v|*f=0. It follows that supp FC {0}, whence £
is a polynomial {8]. Since f (E F,, we conclude that the degree of the polynomial /
is less than B— 1.

(i) Assume p%|| K, f— f!lﬁ-O(l) p—-c0. It follows that the family o* (K, f—f)-

1is bounded in the space M,, which is the conjugate Banach space for C,(13).

The weak* compactness theorem now yields the existence of a measure g& M,
and a sequence (p;) with lim p;= o0, j—>c0, such that

ey dmer [ K0 -SeNe@dr= [ o0)ds@
holds for evei‘y ¢ . Thus by (20) and (21)‘ we have '
[ 7)o ax="] 9()dg ()

which by Lemmma 1.4 means that

(22) g=rPf

Thus gE& M, is the « th Riesz derivative of fEFg, proving the ,,inverse* part:
of the saturation theorem.
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Conversely, assume that there exists a temperate measure g such that (22)
holds. Since by (B) both k and A satisfy the assumptions of Corollary 1.1
‘we have

kelo-1

o (Ko f—f) " =" (k, (v) = l)f:W

vlof=
=Ah0le)g =h, g=(h*dg) "
According to the uniqueness theorem for the Fourier transform it follows
(23) p* (K. f (X) —f (%)) = (%, * dg) (x).

On the other hand, g& M, and A satisfying condition (B) implies A, *dg & F,
and moreover

|2+ dg || Fy =0 (1),
It thus follows from (23) that

o* || Kof —flla=0(D)
which completes the proof of the theorem.

Corollary 2.1. (Characterization of the saturation class)

Let >0 and let fEF,, 1<p<<a+1. Then f has an « th Riesz derivative
in M, if and only if

, 1 [ A
f|Rsaf|!B=’f ?%dul}‘;:()(]), e~>0

where mCN, 2m>a, A2 f(x) is the 2mth Riemann central difference of f,

L,=(—1y22m== [ y=1==sin® udu ({3], p. 409).
0

Sketch of the proof. The operator R, can be written in the from
R*=e=*(K*—1I), where K is a singular integral, whose kernel k.* (x) =<~k (x/e)
satisf.es the conditions of Theorem 2.1. This assertion is proved in [3] for
0<a<2, and for «>2 can be proved similarly. Thus Theorem 2.1 can be
applied to conclude that f has an «th Riesz derivative in M, if and only
if ||R2f|lg=0(1), e—0.

Moreover, it follows from the above argument that f&F, belongs to the
saturation class of an operator satisfying the assumptions of Theorem 2.1 if
and only if ||R*f|lz=0(1), e~ 0.
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3. Local saturation theorem

In this section we establish the local analogues of the results of the
preceding section. Obviously, when we replace in (2) the infinite interval of
integration by a finite interval (a, b), all the norms ||- ||, become equivalent
to L(a, b). Thus the local saturation theorem in F, has the following form (we
first prove the inverse part).

Theorem 3.1. Let >0 and let fEFM1 Let the kernel k of the singu<
lar mtegral (1) satisfy the conditions (S) and (M) and :

a1

(A) (1+x2)_T|k(x)l<c.
Then

() [ Kf~flr@n=0("%, p—>0 = VeED(q, b) Zf(x)ip{“}(x)dx=o,
(i) |Kf~flr@n=00("", p>w0 =

= g€ BV (a, H)V 9D (a, b) f:f(x)cp‘“}(x) dx=_Z<p(x)dg(x)-
Proof. Let 0&% (a, b). In the saiﬁe way equation (20) was obtained

in the proof of Theorem 2.1 we get

(24) lime* [[KS)-FeNe@dr= [ () /() dx.

() Since o*||K.f — fllL@n=0(1), p—>oc0, it follows that for every
¢ED(a, b)
lim p* f K, S (X~ ()9 (x)dx=0
so that by (24) we get

[ )o@ (x)dx=0, VoD (a b).

(i) The assumption o*|{| K, f~fllLw5=0(1), p—>co, and the weak*
compactness of the space BV (a, b) y.eld the existence of a function g BV (a, b)
and a sequence (g;) with lim g;= 00 such that

j—>ee

b
lim p,° f( 0 (=1 ()9 d = f PO, VoED@ D).

14 Publications de 1'Institut Mathématique
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Compairing with (24) we obtain

f Fx) @ (x) dx = f ? () dg (x), che%(a, b).

—c0

Theorem 32 Let f and k be as in Theorem 3.1. Then -

@) H K. f— fHL(a b= 0(p™™), p—>o0 = f is a polynomial of degree 2m>a
in (a, b , (

(ii) H f /’ML(a 5 =0, P> = IR fllew,oy=0(1), €=0
where a<<d <b <b

Proof. (i) Let A€ D(—1, 1); h, (x) n-h(nx), n< N and set f;,(x)~ -
=(f*h,) (x). Then for n large enough

i/n

|| f f”L(a’ = f(Kpf(x“t) f(X—t))h (t)dtlyL(a' <

—1/n
1/n

<|| K.f- f”L(a" vy [ |, (’)ld’<"KfHL(a 5 f h(x)dx O(P‘“) p—> 00

- =1/n

where ‘we have put (a”, b”) (a = l/n b’+ l/n)C(a, b)
We can now app]y Theorem 3.1 to the functlons f EFM 41 1O obtam the
existence of g,& BV (a, b) :such that

(25) f 12 69 9 () i = f ?0)de (), Y 9D, )
from the proof od that theorem be'ng obvxous that

26) |l g llsr @,y <e®|| Kofy=FllLa, 5 = 0(1); uniformly in n.

On the other hand, by Lemma 1.3 f,, has an oth Riesz der1vat1ve
in F,,, f¥=f«n®. By Lemma 1.4-it follows, "

r'; sy

IR

f [ (%) 0 () dx = f @(x)f[“}(x)dx,n VoeDd(@, by . - ..

so that from (25) we obtam ; |

f ? (), () f @(x)f{“} @ dx, VeED(d,b)
&hence‘ ; . 'k
dg, (x)=fx ) (x) dx a.é. in (a’ , b))

so that by (26) it fol]ows ‘ ‘ , S

@7 ”fr{: HL(a’ ,,,)—0(1) uniformly inn e
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On the other hand, by Corollary 2.1: wethave: }{R“f,,”a“<c g~ 0.-and by
(27) the constant C does ‘not depend on 7 in (a AN Le.

(28) t R “fn HLW bn=0 (I), e-—>~ 0 umfarmly m .

Since || f,—~f lluwi—> 0, t—>e0: and, R is; a: bounded Imea.( operaton, Plettlng n
tend to mhmty in (28) we have

IR fdw w—om, >0 ,,L N

which completes the proof of (n)

LR

(i) From the assumptxon “K

b)—O(p‘“), p >, we can deduce
@9 f R, fn“L(a’ b')-0(1) g— (h umformly 111 n

in the same way’ (28) was -obtained “in ‘the. ‘proof ef part (ii).
Since f,=f*h, is smooth, by the definition”of the operator R.* we get

‘(\

b DA A TR A = g
- i * llm H Raaf;‘ ;“R‘x\ 6! '“L(a’\b')-—
&0 u

so that by (29) it follows

A2 fn(x) du 0 ae \xE(a" b)
S The
(1]

RN

whence . A2 £, (x)=0, which insview of the smoothness of £, implies. 2m(x)=0,
xe(ds b’) This " in" turn ' ‘'means- that £, equal ~a" p?)i\yno‘lmal of degree 2m
in (a', &), from which it finally followssthat £ be'ng a uniform limit in (@', b')
of polynomials, is itself a polynom1a1 of degree 2m in (a', b").

Thus - the inverse par of thé loeal saturatglpn theorenus proved. The
proof of the direct paft leans on the fact that 'the exzs)tenge ‘of an ath Riesz
derivative for f implies the existence of & th-R.esz derivative for % -f, where A& D.

Lemma 3.1. ([9]). Let fEFHl for oc>0 and hecb(a; B). Then
IR, fHua,b)—-O(l), s—»o = HR (hf)hu* (1), &0

o D i

This Lemma was proved in [9} for the spaces Le Tt s obVIous, in view
of the properties of the operator R (Coroﬂary 2. 1) that it is. also true in
the spaces Fm,r1

\

A

Theorem 3.3. Let f and k satlsfy the assumptzons of thearem\?: 1 Theﬂ

. LR

| Re fl\L(a n=0(1), c=>0 = p*|| A pf, fHL(a' b/)—«O(l)
“ 7 Proof Let ke%(a, b) be such that k(x)wl for xE(c,,d)C(a bz
and let: (a", DYC (c; d% ~

s Llet f&F, ; be such that” H e /f[\L‘(a 5 =0(1); \e~»€) Then aecordmg to
Lemma 3.1 it follows | R () |[r =0(1), e— 0. e I DO

& g
RS ISR A

14+
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Applying the global theorem (2.1) to the function %-f we obtain
(30) 1K) ) Lw=0("",  p—>co.
Since for x&(d', b'), A(X) f(x)=f(x) .
1K f~flirw.on<|| K f—K, (W) |L@,on+ || K (W) — (W) | L@, 3y
Thus, in view of (30), the proof will be completed if we show
Gh | Ko f— K (W) | Lw,0n=0(p"%),  p—>o0.
To this end observe

K, () @)K, f(x)= [ ()= 1) £ (&) b, (x—1) dt =

= [ k@O-DFO) k,x—1)dt
tEle, d)
so that it follows

bv
K, ()~ K, fllewmn=| [ GO-DSO k-1 drs
a’ - t&E(e, d)
bl

<2 [ 1f0) k(-0 drdx

a’ teE(c? d)

If we introduce the change of variables x—¢=u in the last integral, using
the fact that xE(d', b) and 1t (c, d)D(a', b'), we get |u|>8=min(|a' —c]|,
|6 —d]). Hence '

4

5K Sl [ [ ‘—fl—ﬁj‘l—jﬁ)—'lu\“wkp(u)ldudxs
a:? ju|>8
N 4
a4l | M
Sﬂgglul lkp(u)lff PES dudx<

a Ju|>8

t at1 . |
<2 sup —\ ele@) |- Cllfllas

[t1>p8) p

<Cyp~® sup [r[**1|k(#)]|=0(p"%, p—>o0.
Yt|>p3

Thus (31) is established and this completes the proof of the theorem.

Let us finally remark that the global and local saturation theorem from
Sections 2 and 3 can be proved along the same lines for the spaces L?. It is
readily seen that in this case condition (B) in Theorems 2.1 is superfluous,
while condition (4) in Theorems 3.1, —3 remains unaltered.

We thus conclude that even in spaces L? a certain smoothness of the

function k is required for the local saturation, in contrast to the global satu-

ration which depends only on the properties of k in the neighbourhood of ze-
ro (condition (S)).
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For example, the operator of Riesz means, whose kernel
(t=primy - i<t
P g (V)= ,
ma={g "1 e
obviously satisfies conditions (S) and (M), with «=m, is globally saturated for

every m, n>0. However, if m>n, n&N, the mth derivative of .. becomes
unlimited in the neighbourhood of the point v= 1, so that the” operater is
not locally saturated.

Finally, the following conclusion can be derived from the above. If the sin-
gular integral (which satisfies the standard conditions (S) and (M) and is thus
globally saturated) is ,,good enough* to ,,distinguish‘ local properties of fun~

a+l
ctions in L7 (i.e. satzsfxes the conditions (1+x?) > |k (x)|<C), it is also good
enough for the approximation of functions from all the spaces F;, B<Ca+1
and has in all these spaces the same order of saturation.

Remarks. 1) J. Kudera [7] has developed a very general theory of
multipliers of temperate distributions. However, his approach dces not suit
our needs, since the space of temperate functions is cecomposed into spaces
whose elements f are such that f(x) (1+x%)~*2cL? (instead of €L, as in
Def:nition 1.1). We see that these spaces are not appropriate for convolution
with & satisfying (1+xD)*? k (x)CL>, and since this condition for k is a na-
tural one and indeed satisfied by many important operators, we are bound to
introduce the spaces F,.

2) G. Sunouchi [10] has proved a local saturation theorem for the
spaces of periodic functions. However, his method of proof strongly leans on

the representation of funciions by their Fourier integral f ]/”\ (w)ye™ duy and

obviously cannot be extended to L? spaces, p>2.
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