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Introduption

In this paper we consider two topics: saturated atomless Boolean algebras,
and the first order theory of Boolean algebras together with A ultrafilters (A
is a cardinal).

Concerning the first theme, we have found several equivalent conditions
for an atomless Boolean algebra to be k-saturated. The first is Negrepontis”
separation principle H, which appeared in his 1969 paper [12b]. However, for
k=w, this condition was considered by W. Rudin [14], and for arbitrary k
and ordered sets, several separation (or intercallation) principles of the -same
nature were introduced by B. Kurepa [10b]. Kurepa considered these properties
in connection with k-universal ordered sets, and Negrepontis introduced H, in
order to describe universal homogeneous Boolean algebras. The second condition
is k-injectivity, where the term injectivity is taken in a stronger sense ‘than it
is usually considered in the theory of modules, or in Boolean algebras (cf. [7],
[14]), i. e. all mappings in question are assumed to be 1—1. In fact, this notion
is closely related to k-objective, and injective mappings in [19]. However, we
rather used Blum’s criterion on model completions (cf. [14] p. 89) than the
approach of Yasuhara. Other properties, especially concerning cardinality of
saturated Boolean algebras, are found. For example, it is shown that every
infinite homomorphic image of an «,-saturated Boolean algebra has cardina-
lity =29,

It the second part, the main theorem is: The theory T, of Boolean
algebras with A distinct ultrafilters has a model completion T3. Models of T3

are again atomless Boolean algebras. k-saturated models of T; are described,
those are axactly models 4, U,),<»> Where A is a Boolean algebra which

satisfies H,, and U, are k-directed filters, i.e. P (k) points in the Stone
space of A.

In applications, we proved that the theory of distributive lattices has a
model-completion, that is the complete theory of (UNIL N, U, C), where U
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is ‘an ultrafilter, and I a maximal ideal of an atomless Boolean algebra. Using
- a theorem of S. Shelah (cf. [16)]), and o, -saturation of 2¢/F, it was proved that
the filter F of cofinite sets is m,-saturatlve Posssibly new proofs of the existence
of independent families of sets is given. In topological interpretations in the
light of Stone functor, it is not a surprise that some well known theorems are
obtained, as the ones of W. Rudin [14], and I. I. Parovidenko [13], respectively.

Many results in this paper are known through the theory of the Jonsson
class of Boolean algebras (cf. [4]), or the theory of N*=BN-N (cf. [I8],
but we think that the contribution should be seen in the unified treatment of
the mentioned topics by methods of model theory.

The greatest part of this work was done during the authors visit to the
University of Wisconsin in Madison, fall 1979, and the author is indebted to
the logicians in Madison for discussion and inspiration, and. particularly to
prof. H.J. Keisler.

1. Preliminary.

The terminology . which 'is used in this paper is according to [3], [11],
and [15]. Thus, a language is denoted by L, the language of a theory T by
L(T), and of a model € by L (&). Universes of models %, B, &, ... are denoted
respectively by 4, B, C, ..., and the cardinal number of 4 by |A4!. The
class of all models of a theory T is denoted by IR(T), and elementary dlagram
of & by A(@). Basic model-theoretic notions, like model-complete, model-
-completion, saturated models etc., and also related facts (definitions, theorems)
are assumed to be known.

Further, we suppose that a model A of a theory T is a prime (universal)

model iff it is embedable into every model of T (every model of T of cardinality
<|4/| is embedable into ). Similar definition applies for homogeneous models:
Any partial isomorphism f: %= , U, [f]<|4]|, with domfCU, can be extended
to an automorphism of 9. Models which are called in [3] universal, homogeneous
etc., we call elementary universal, elementary homogeneous etc. {
, Boolean algebras are denoted by 4, B, C, ..., and their domains respec-
tively by 4, B, C. It is assumed that every Boolean algebra B is of the form
B= B, +,+,",<,0, 1), where +, -, and ' are usual Boolean operations. Two-
“clements Boolean algebra is denoted by 2 Instead of Boolean algebra, we shall‘
often write shortly BA.

Let B be a BA and assume X, YCB. The infimum of the set X is denoted
by Hx and supremum by E.x If a& B, then a< X stands for Vy&X (a<y),

and a<X for vy&X (a<y) By X<¥ we mean VxCTXVy&Y (x<y). The
szmxlar meaning has X<{Y. If x&&B, then a|x stands for Ja<x A 7x<q, and
allX for VyeX(aHy) By X< Y, the formula VxEXVYEY (Tx<yp) is
denoted.
Now we state two lemmas on extensions of Boolean embeddings, A form
of the first lemma appears in [7} p. 141

Definition 1.1. A model $ is a simple extensmn of a model U iff
ACHB, and there is an element aS B such that B is generated by 4U{a}.
(f. [15] p. 89).
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If B is a simple extension of U, we shall write B=U(a). In the case of
BA’s we use the notation B= A @.

Lemma 1.2. Let vf.A—>,B be a Boolean homomorphism, and A(a) a '
simple extension of A. Suppoge f ~satisfi'es the following conditions for an element
b of B: -

VxEd(x<a = f(X)<b), Vxed@<x = b<f(¥).

Then there is a unique homomorphism h:A(a)—B so that fCh and h(a)=b.

If in addition f is an embedding whzch satzsfzes VxcAdx|la = f(x)|b),
then h is also an ambedding.

Proof: Elements of 4(a) are of the form ax+a'y, x, y&A4. The map
h(ax+d y)=>bf (x)+b' f(y) is well defined, and satisfies the required conditions, —|

- Lemma 1.3. Let A be a finite BA, B an atomless BA, and h: A-—»B an
) embeddmg Then h can be extended to an embedding f:A(a)—B.

Proof: In the followmg, we may assume without loss of generality that A
is an inclusion, i.e. h: ACB. Let {a,, ..., a,} be the set of all atoms of A.
Since B is atomless, for every a; there is ¢;&B such that a;>¢;>0. Let
I={i<71:aa,-750, a a;7#0}, J={i<n:aa;#0, a" a;=0}, and b=.2 ¢+ X a.
The map f: 4 (a)—B defined by f(ax+a y)=bx+b’ y extends hlezand i{ceiJs a
Boolean embedding. —

Now we give a short rewiew of some well known facts on atomless
Boolean algebras. All these assertions easily follow from the last lemma. Here T’
denotes the theory of BA’s, and T* the theory of atomless BA’s.

Theorem 1.4. T* is oo-categorzcal. —

Theorem 1.5. Every two models of T* are elementary equivalent in
Qew. T* is a complete theory. —

Theorem 1.6. T* s model—complete. ~—|
Theorem 1.7. T* is model-completion of T (cf. [8] p. 136). -
Theorem 1.8. T* is a submodel-complete theory. —

Theorem 1.9. T* allows elimination of quantifiers. —

2. Saturated atomless Boolean algebras.

We give several equivalent descriptions of saturated atomless. BA’s. It
appears that these BA’s are exactly universal homogeneous BA’s. The later are
investigated in details in [4], and we shall use occasionally the technique and
results contained in that book. However, our approach is different, and consists
of applications of properties of theories which have model-completions. This
approach in general setting is investigated in [11].

By a Jénsson class we mean any class of models which satisfies the
conditions in [4], p. 84.
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Universal homogeneous models will be called shortly full models.
The following theorems were proved in [11].

Theorem 2.1. ([11], Cor. 2.3) Assume that a theory I' has a model-
-completion I'*, V3 axiomatization, and a prime model. Then the class of all
models of T, M (), is a Joénsson class. —|

Theorem 2.2. (cf. [11], T. 2.8.). Assume a theory T has a model-
-completion I'*, a prime model, and suppose L(I") is countable. Then:

1° If & is an infinite saturated model of I'*, then € is a full model of T".

2° If & is a full model of I' of cardinality k>w,, then € is a saturated
model of I'*.

Henceforth T denotes the theory of BA’s, and T* the theory of atom-
less BA’s.

Proposition 23. M), M(T*) are Jonsson classes. (cf. [4], § 6)

Proof: By T.1.7. and T. 2.1. Obviously, T* is the model-completion
of itself, —f

By T.1.7. and T. 2.2. we have immediately the following:

Proposition 2.4. A Boolean algebra B is universal-homogeneous (i.e.
a full BA) iff B is atomless and saturated. - :

Now we proceed to more explicit description of full Boolean algebras.

Let k be an infinite cardinal and 4 a BA. The following useful conditions
H,, R, were introduced by Negrepontis ~[12 bl.

1° A Boolean algebra A4 satisfies the condition H, iff A satisfies the
following: Let X, YCA, X directed upward, Y is directed dowﬁward, 0LY,
1&X, | X|+|Y|<k, X<Y. Then there is an element ac4 so that X<a<Y.

2° A Boolean algebra A satisfies R, iff A satisfies the following: Let
X,Y,ZCA. Assume X, Y satisfy the conditions in 1°, and | X+ |Y|+|Z|<k,
Z|<X, Y|<Z. Then there is ac A4 so that X<a<7¥, al|Z.

It should be mentioned that the condition R, for arbitrary ordered sets,
under the name of k-intercallation property, was introduced by . Kurepa [10b].

Kurepa considered this property in connection with k-universal ramified orde-
red sets.

The following theorem is given, for example, in [11 b].
Theorem 2.5. If a BA A satisfies H), then A satisfies R,. —

Remark 2.6. Obviously, in definitions of conditions H,, R,, we may
assume that X is a proper ideal of 4,-and Y a proper filter of A4, where the
condition |X|+|Y|<k is replaced by = (X)+7(¥)<k, where 7(X) is the
generating number of X i.e. the least cardinal « so that there is a set of
cardinality o which generates X. Then the separation principle H, can be stated
also in the follow'ng form (and R, in a similar form): If X, ¥ are proper
ideals of 4 so that T (X)+7(Y)<k and XY =0, then there is a4 such that
X<a, Y<da'. Of course, there are appropriate versions of H,, R, in terms of
filters.
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Theorem 2.7. A Boolean algebra A is an atomless, k-saturated BA iff 4
satisfies H,. ”

Proof: (=) Assume 4 is atomless and k-saturated, and let X, Y be as
in definition of Hy. The set I (c)= {x<e:xeX}U{c<y:y€Y} determinates
a consistent type over Th(dxyur), so by k-saturation of A there is an element
aEA so that 4 |= I'(a),i.e. ‘X<a<Y. (<) Now, assume "A satisfies H,. Then
A is atomless because for any a& A, a>0, by H, there is bc A, O<b<a.

Let II(x) be a maximal type over a subset U of A, |U|<k. We show that
IT1(x) is realized in 4. T* allows elimination of quantifiers, thus IT(x) is

determinated by the set IT' (x) of atomic and negatomic formulas contained in
II(x). Let C be the subalgebra generated by U. Then every atomic formula

of II(x) is equivalent to a formula of the form ?(x)=0, where #(x) is a term
" over L(T)J{c:c&C}. Using the representation theorem on Boolean terms,
there are cl,ZZEC so that ¢;x"+¢,’x=0. Thus, 1(x)=0 & ¢, <xAx<c,,
and 1(x)#0 & ;<xVx<c, Further, ¢<x © c<xVec=x, and because
IM(x) is a type, we have (c<x)EIl(x) iff exactly one of (c<x)EIl(x),
(c=x)ETII (x) holds. - -

We see that IT(x) is an atomic type iff there is c&C so that (x=c)& I (x).
In that case, I1(x) is trivially realized by c. Hence, assume Tl (x) is a nonpri-
ncipal type. Thus, for X={ccC:(c<x)€H )}, IY={ccC:(x<)cl (x)},
Z={cEC:(x||c)EII(x)} we have that X, Y, Z satisfy conditions in R,. Since
A satisfies H,, by T. 2.5 A also satisfies R,, thus there is an element ac 4
so that X<a<Y, a||Z. Hence, a satisfies IT' (x), and thus II (x). —

Corollary 2.8. Let A be a BA. Then the following are equivalent (for

the equivalence of 2° and 3° also cf. [4], § 6):
1° 4 is a saturated atomless BA. 2° A satisfies Hy, where k=|4]. A

is a full BA.

Corollary 2.9. (cf. [4],§6) Let A, B be BA’s. If |A|=|Bi=k, and
A, B satisfy Hy, then A~B.

Proof: A4, B are atomless, thus by completeness of T* A=B. By
C.2.8. 4, B are saturated, so by uniqueness of saturated models ANB -]

Now we give another characterization of atomless, k- saturated BA’
Before we do that, we list some definitions and theorems.

Definition 2.10.-1° Let M be a class of models of a language L,
and k an infinite cardinal. A model AEIN is called k-injective in I iff for
any B, €M, so that | B|<k, | C|<k, and any embeddings f:B—->UA, g:B—C,
there is an embedding #:&—9 so that Ag=f (also cf. [19]).

2° A model A<M is injective iff it is | A |-injective.

3° U is elementary (k—) injective iff all above embeddings are elementary-

The following theorems are given in [15]. In their formulation it is
assumed that languages in which theories are formulated are countable.

12+
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Theorem :2.11. Let k be uncountable. Then ¥ is k—saturated iff U is
eiementary k-injective. —

.Theorem 2.12. (L. Blum) Let I’ and I'* be theories in the same
countable language, and suppose that I'CT™, ' is universal, and every model
of T' can be extended to some model T*. Then I'* is the model-completion
of F iff every diagram of the following sort can be completed as shown:

B* 8, B@=T
f o
B C %(c\ B js !Bi*.—— saturated. —

In the fc)liowmg theorem -another description of atomless k saturated BA’s
is given.

Theorem 2.13. Let B be a BA, and k an znﬁmte cardmal Then the
foflawmg are equivalent:

1° B satisfies Hy.

2° For every BA 4, | A |<k every embeddmg I A—B can be extended to
an embeddmg g:4(c) ->B

3° B is k-injective ‘in the class of all BA s.

‘ Proof: (1° > 29 Assume B satisfics Hy, and |A|<k.- First assume
k>w. Then by T.2.7. B is k-saturated, hence conditions of T.2.12. are satis-

fied. By the same theorem the asertion holds. If k=, the assertion holds by
L. 1 3. '

©(2° = 3) Let f14i3B, g4 -+ C, where |4|<k, |C|<k, and

C g(A) {e, a<k}. Defxne the cham of BA’s (Cpra<k) by Cy= =g(4),

Cai1~ Boolean subalgebra of C generated by C U{Cu} and if « is limit then
C = U C,. Then h: c —>B is defined by k consecutive uses of 2°.

(3° = 1°y Assume B is k-injective 'in the class of all BA’s. First we
prove that B is atomless. Let & B, b, b's£0. Consider Boolean subalgebra
{0, 1, 5,5} “of B. Obviously this BA is isomorphic to the field of sets
{o, {O 1}, {2}, {0, 1, 2}}, and an isomorphism is given by g(b)={0, 1},
g(b")={2}. Thus, there is an embedding & of the field S ({0, 1, 2}) into B
with hg (b)=>0. Then 0<h({0})<b. Hence Bis atomless. If k=, B satisfies H,
“since B is atomless. So assume k>>c. Since PHTH T, Bis ‘also k-injective

in EDE(T*), T* is:model-complete, thus all embeddings in questlon are elementary. -
Hence, B is. elementary k-injective, thus by T.2.11. B is k-saturated. —|

Corollary 2.14. If BA’s A, B are injective and |A|=|B|, then A=~B,
Proof' By the‘ previous theorem and uniqueness of saturated nﬁcdels =

, Proposumn 2.15. If k is infinite and B satz.sfzes H, then. Bisa
k-universal model in W (T). .
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Now we give some other properties of k-saturated atomless Boolean
algebras. A

Definition 2.16. 1° Let 4 be a B4A. A nonempty subset SC_A is a
cellular family iff 0&ZS, and VX, yES (x£y => xp= 0). .

2° The cellular number of a BA 4, cel(4), is sup {|S1:SC4, S is a
cellular family in A} (cf. [10a]p. 131)

Proposition 2.17. Assume k .is infinite and B satzsfzes H,.. Then
cel(B)>k

. Proof: Bis an infinite BA, thus there is an infinite cellular subset
SCB. Hence cel (B)><o Now, let S be any infinite cellular family of B. By
Zorn’s Lemma there is a maximal cellular family S’DS. Assume |S’|<k.
Then I'(x)={xs=0:sES"} J{x#0}U{x#s:5&S"} is finitely consistent, ‘thus
by k-saturation of B it is realized in B by an element 5. Hence, S’ 1s not - a
maximal' cellular famﬂy, what is absurd. —

Lemma 2.18. Let B be a BA, and SCB a cellular family. Then S can
be collapsed into a set of atoms, i.e. there is. an atomic Boolean algebra A and

a homomorphism f: B 4 so that the set of atoms of 4 is {f(x): xGS} and
for X, yES if x#y then f(x)#f ().

Proof: Let aEB, a#0. Then B,=(B,, +, -,'¢, <, 0, a), where

B,={xE€B:x<a}, x'*=ax’, is also a Boolean algebra. Let for each aGSI
be a maximal ideal in B Let 7 be the ideal of B generated by U

B = B/I and k:B-—B’ the canonical homomorphlsm Further, let J= {bEB"
V acS (bk (@) = 0)} It is easy to see that J is an ideal, so let 4= B 'IJ, and
h:B'—A the canonical homomorphism. Then f=hk is a homomorphism from
B onto A and the set of atoms of 4 is {f(x):xES}. -

Proposition 2.19. Let B be k*-saturated atomless BA, where k is an

infinite cardinal. Then the Boolean algebra S (k) of subsets of k is a homomorphic
lmage of B

Proof: Since B is k+-<aturated by P.2.17. there is a cellular family
SCB of cardinality %. By the previous lemma there is an atomic BA C

h: B———>C so that the set of atoms of C is A={h(x): xGS} Now we prove
that C is complete. Let XC A and Y =4 X. Further, let U= {x&S:h(x)eX},
V={xES:h(x)EY}, and T (x)= {u<x:ucUIU{xv=0:v&V}. T'(x) is finitely
consistent, UUV =S, and |S|<k. Thus, by k*-saturation of B, I'(x) is  rea-
lized in B, say by a. Hence, VucU (h(u)<h(a)), VvEV(h(v)h(a) O) sO
h(@=supX. Therefore, C=S (k). —

Corollary 2.20. Assume B is k*-saturated. Then iB[‘;Z"; — ‘
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Proposition 2.21. Let k be an uncountable cardinal, B a k-saturated
atomless BA. If an atomic BA C with countable set of atoms is “a homomorphic
image of B, then C is compz’ete, i.e. C _f::S(w)

Proof: If C is finite there is nothing to prove. So assume C infinite,
and let 4={a, :nC o)} be the set of atoms of C. Now, we prove that every
subset SC A has the supremum. If S or 4§ is finite then the assertion is
obvious, so assume |S|, |4—S|=o, say S={b,:ncw}, A-S={c,'nCw}. Let
for each b;, ¢; Bi, 7;&B so that A(B)=b;, h(y)=c;, and u,= = B, v,= Zv;,

I\ﬂ 1<I!

icw. Then uo<u1\ ccand vy, L., thus wgv, +u1v1 + .- +u v, <
<(u0+v0)(u1+v1) -(u,+v,) for edch neo. Since uz' +vz<uv & w'<z<
<u+v', we have uyz +v z<uy vy A+ o0 AU, 2 +v,2<u,Y, ©

u{)‘i’o—k SR o 9 <z<(u0+v0)‘ . c(un-ty )

LA

Therefore, I' (z)= {u 24y, z<u, v, nEm} is finitely consistent, so there is
beB whxch realizes (z) Let c—h(b) Then for each n&w (by+ - - - +b e +
+(cy+ + -+ +ee=0, i.e for all x&Sx<e, and for all x&A-S x<c Thus
—supS —4
Corollary 2.22. Let k be an uncountable cardinal and B k-saturated,
atomless BA. If a BA A s an mfzmie homomorphic image of B " then S(w) is
a homomorphic image of 4 (and thus |A|>2°). —

We can say somethmg more about the cardinality of k-saturated Boolean
algebras.

Definition 2.23. The saturation number of a model ¥, sat(3), issup{k: ¥
is k-saturated}.

Theorem 2.24. Let A be an atomless BA. Then sat (4) is a regular
cardinal. '

Proof: It is obvious that it suffices to prove the following: If k is a
singular cardinal and if A4 satisfies H,, then A satisfies Hi+. So suppose k is
smgular and A satisfies H,. By R.2.6. it suffices to prove that for any two
_proper ideals 1, J with I7=0, t(I)++(J)<k, there is an element aCB so
that I<a, J<a'. Obviously, interesting cases are when t(I)=k, or v(J)=k.
So assume t([)=7(J)=k, and let A==¢f (k). Thus, A<k, and for a generating
set S of the ideal 7, there is a sequence of sets S,(x<<3) so that S= U S,

and if a<<B<A then § CSS, and |S,|<!S;|<k. Let I, be the ideal generated
by S,. Thus, T= U I&, and a<B<A implies ICI and 7)<t (y). In a

aA<A
similar way, we can represent the ideal J as a union of an ascending chain of

ideals J,, a<, with similar properties. As IJ=0, we have [, J,=0 for all
o, B<A, thus by H, there are elements a, with I,<a,, J, <a.

We construct (wo sequences (b,:a<<d), (c,ia<}) of elements of 4 which

- satisfy: 1° L<b,, J,<cp» 2° For a<B<h, b, <by<1, ¢, <eg< 1, 3° For a, B<h
b,cz=0, 4° For all a<A b,<F,, ¢,<G,, where F, is the filter generated by
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{a,: A>p>oc} and G, is the filter generated by {a, :2>p>a}. Now assume we

have constructed b, ¢, for B<a. Let I' be the ideal generated by qu{b B<al
. Then (I <k and I' < F,. Thus, there is an element x& 4 so that I'<Kx<(F,.

Let b,=x, ¢, is constructed similarly, It is easy to see that b,, c, satisfy con-
ditions 1°—4°. Let ;,J; be ideals of 4 generated respectively by {b,:a<A}.

‘Then 1,J,=0 and r(l)+’c(])<7\<k so by H, there is a&B so that I <a,
Jy<a'. Smce ICT,JCJ,, a also separates I and J.

The case t(I)=k, v(J)<k is done in a similar way. —4

Corollary 225 Let A be an atomless BA and k=sat(A). Then

iz (k5= 3 k).

w<<k

Proof: Assume k A%, Then by C.2.20 |4|>2"= k

 Assume k is a limit cardinal. By C.2.20. |4|> sup 2“—2 By the pre-

vious theorem k is régulér, thus 25— kf', hence |4 }>k". —~
f Corollary 2.26. (cf. [4], T.6.12) 1° Assume,~A ‘is a saturated BA of
cardinality k.. Then kbz k”’i.
2 If }’c~——!<:ii then there is a saturated BA of cardinality k.

Proof: 1° Follows from the previous corollary.
2° By the theorem on existence of saturated models. —

Atomless Boolean algebras which are o -saturated have got the attention
of several mathematicians, starting with Hausdorff (cf. [9]). For other historical
remarks one can consult [4], § 6.

Proposition 2.27. An atomless B4 A is o,-saturated iff for any two

nonempty chains R, S of 4 with {Rl+iS;<m,~R<S, there is a4 such that
R<a<§.

Proof: Let X, Y be as in definition of H,, and assume X ={a,:nCa},
Y={b,:nCow}. Define r,= 2 a, s,= = by. —
k<<n k<in

The following example essentially belongs to H.J. Keisler; he proved
the clause 2° in T. 2.13. (¢f. [9]). We show that this BA satisfies H,,, so we
" believe that this proof is simpler.

‘Example 228, Let {A :nCe} be a countable set of atomless Boolean a}gebras,

and D the filter of cofinite subsets of ®, Then the reduced product B= II A,,/D is an
X nce~
atomless w, -saturated BA. )
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~ Proof Let 4=TI 4,. We observe several facts:
~ o~

r B =4/, where [= {fE A: () =0 for ‘a’}‘li‘ g;",,e,xcepi :'fi\nitely many},
20 f{I<g/l iff f(n)#g (m) for at most finitely many n€w.

. ¥ fil>g/l iff there is A=A so that. g/l=h/I 4nd k<[ (observe that < F Ot
v nEa (< f (). Ea | o

& gll<fII iff {(nCo:g (EF)} is finite, {nCo:g. ()< f(W} is infinite,

First, let us prove that B is .atomless; So assume f/f>0. Thus, S={nCeif(#)>0} is.
infinite, Let §=5,US;, S,NS =, S, S, are infinite. Define £ by am=f(@) if nES,,
h(n)=0 otherwise. Then f/I>h{I>0, U e o

According to the last proposition it suffices to show the separation principle He, for
chains of 4. We distinguish, two  cases, The first is -when the left chain has the greatest
clement, or the right chain has the smallest element, The second case is when the left chain
has no greatest element, neither the right'cha‘in_vhag the smallest element,

So assume the first case: 0<<---<f/I<fy/l. By 3°.we may assume that -.-<fi5f,.
Since for each kCw the set {nCw:fy ()0} is infinite, there is a sequence (mzikcw) so
that for all &k Zo fr(m)>0, m<ng,,. Define & as follows: & (m)=f; (np), A (W=0 for
ng{m: o} Then 0<h/l<f, /L tor all nC o, P

Now, assume the second case: fy/I>fi/I>..->g /I>g/I. By 3° we may assume
fizfizee, and .- >g 28, Let s be. the least. mS o such that Vr>m(gr (W< fi () sk

exists by 4°, -Obviously, s, is an ascending sequence,” We consider two cases: (1) There is m,
s0 that ¥ 23 m, (5, — Smy). Let m,=max (my,, sm,) (remark that for n>n, g, (< f (). Let &
be defined as. follows: for n<m h(m)=0; if n>n, then h(#)=g,(m). Then it is easily seen
that f/I>fill>- - >h/I> < >gi/I>g,/1. (2) The sequence 5=(s;:kCw). is. cofinal in @,
Thus, s has a strictly increasing subsequence, The corresponding subsequences in f,/1, g,/1
are respectively coinitial and cofinal,- so.an element which separates these subsequences also
separates f,/I and” g,/I. Thus, without loss” of generallity we may assume that s itself is
strictly increasing. Let us define & as follows: for n<s,h(@=0; if kCo and s<n<sg.,
then h{n) =gy (). It is easily seen that f,/I>h/I>g,/l for allm, nCo. - ‘

Corollary 229 1° (H J. Keisler) Assume Continuum Hypothesis (CH). If for all
ic® A4;, B; are Boolean algebras of cardinality at most ;, then II 4,/D=2 I1 By/D. :

ico icw . T

2° S(w)/S, (w) (the field ofsubsets of «»  modulo the ideal of finite subsets) is
w-saturated BA, . B ’ o S ’ ) :
3° Assume CH. S (®)/S, (w) is a saturated atomless B4 of cardinality 2%,

' ?ro‘q f: 1° Observe that &3?>§;g}d?45fb=}%} iIgI;BJDi;?, and of =29 =w,. Thus, tht?
assertion hods by the previous example and the uniqueness of saturated models,
2° 8 (@)/S,, (@) 222°/D. .
3° By the previous gxam\tpievand‘ 2"‘,,\ —4

3. Boolean algebras with ultrafilters.

In this part, Boolean algebras together: with X 'distinct ultrafilters -are
considered. First, the case A is finite is investigated, then X arbitrary. Once
again, let us remember: that T, denotes the theory of these models. If A is a
model of Ty, then A=1(4, U,)ucr, Where 4 is a Bd, and Uy(x<}) an ultra:

filter over 4. Ultrafilters are denoted also by ¥, P, Q etc. If Pis ani ultrafilter
over A, then PC=A~P={x':xCP}, i.e. dual maximal ideal. Remark that
xePCHf X'CP. =

Proposition 3.1. Let A be finite. Then T, is w-catégorical. . -
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St Proof: First we prove the assertion for A=1. Let Q be a countable
free BA with o free generators a,, a;, ... . £ is an atomless BA, thus, by
T. 1.4. every atomless countable BA is isomorphic to Q. Hence, it suffices to
show that for any two ultrafilters U, V' over Q, (Q. U)=(Q, V). As U is an
ultrafilter, U decides for any q; if ¢;CU, or 4,CU, and similarly holds for V.
Hence, there are o, B&2¢ so that a*@cU, a*OcV, icw (here ¢°=¢, c'=0),
and for the map f defined by f (a“(’)) a;*?, iCo, there is a (unique) isomo-
rphism #:Q—Q, fCh. Then, also, h:(Q, U)=(Q, V).

" Now, let A=n-+1 be arbitrary and finite, n>1. Further, assume
U=, Py, ..., P), B=(B, Qp, ..., 0,), U, B|=T>, [ 4], |Bl=w

Claim Thére are a,cP;,, i=0,1, ..., n, so that a,.aj'zo for i=j,

2 g;=1.
ign,l PR

Proof of c1a1m Since U;# U, for O<t<]<n there are elements c; & U,
€ ,EU; for 0<i<j<n. Let b= ¢ - II ¢y for k<n, where the empty

i<k k<j<n

product is taken to be 1. Then bkEUk, by b, —0 for k;ém Let ay=b,+ I bk,

. k<n
and a,=b, for k>>1. Then the elements g, satisfy the required conditions.
~ Remark that this claim holds for any UA|=T,

 Now we return to the proof of the prop0s1t10n By the claim, there is.
also a sequence (b, :k<n) so that b,cQ,, b;b,=0 for k#m, X b,=1.

k<n

Observe that A ﬂP is an ultrafilter over A » and A is .an atomless BA.
) Thus, by the f1rst part of the proof, there are 1somorph1sms

Fii (A Ao VP 5 (B B, N10))

~ Then the map f A —B defined by f(x)= 2 f;(a; x) is an 1somorphlsm

“ i<<n
from A onto B. —
Bu Lindstrém’s theorem and Los§-Vaught test we have:

Corollary 3.2. T, is model-complete for finite ).

‘Corollary 3.3. T is complete for finite h.

Definition 3.4. Let 4 be.a k-saturated B4, U an ultrafﬂter and] J
a maximal ideal over A Then:

1°Uis a k- saturated ultrafilter over A4 iff (A U) is a k-saturated model.

2° J is a k-saturated ideal over 4 iff (4,7J) is a k-saturated  model.

- . 3°.U is a k-directed iff for any subset SCU, |S'|<k, there is an element
acU so that a<S.

4° J is k-directed iff for every subset SCJ, |S|<k there is an element
a<J such that S<a.
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These notions are introduced in order to describe saturated models of T,.

It will appear that k-saturated models of T » are exactly those models
(A, Pm)<x<l in which the ulirafilters P, are k-directed.

Proposition 3.5. Let A be a k-saturated BA. Then:

1° An ultrafilter (maximal ideal) S over A is k-saturated iff S€ is a
k-saturated maximal ideal (ultrafilter) over A.

2° An ultrafilter (maximal ideal) S over A is k-directed iff S€ is a
k-directed ideal (ultrafilter).

PI'OOf: Observe that (A, +, ,, 0, 1, S)_%(A; S ,’ 1> 03 >)~

Lemma 3.6. Let a BA A satisfy the condition H,, assume k is an
infinite cardinal, and P is a k-directed ultrafilter over A. Further, suppose
X,Y,ZCA so that |X|+|Y|+|Z|<k, X<Y, 1&X, 0&Y, X is upward and ¥
is downward directed, Z < X, Y |< Z. Then: 1° If YCP then there is pEP such

that X<p<Y pllZ, 2° If XN\P= o then there is pC A such that p EP and
X<p<Y, p| lZ

Proof: First, let us observe that by T.2.5. A4 satisfies the condition R, *
Further, we need the following assertion. ‘

Claim: For any subsets X, ¥ of 4 such that X<7, |X|+|Y}<k,X
is upward directed, Y is downward directed, YCP, there is an element a&P
which satisfies X<<a<Y.

Proof of the claim: By H, there is gcd, X<g<Y. If XNP+#g,
then obviously g&P. So assume X\P= o, and g P. Thus, g&P. Then the
set S={yg' :ycY} satisfies SCP, and |S|<k. As P is k-directed, there is
¢cEP, c<S. Let a=g-+c, Thus a&P and X<a<?Y. If for some y,EYa=y,,
then y,=g+c, i.e. y,8 =cg’, what contradicts to y,g'>c. Hence X<a<Y.

Dualizing this proof in (4, -, +.', =, 1, 0) we have also: For X, Y as
above, but with XN\P= g, there is acA4 such that X<a<7, and ¢’ EP.

Now, we prove 1°. Thus, assume YCP. By R, there is a4 such that
X<a<Y, a||Z. By the claim there is »CP such that a<b<Y. Observe that
there is no z&Z so that bz If a&P we are done, so assume a¢ZP. Let
Z={cy:p<a} (x<k). A descending sequence (by:B<«) is defined inductively
so that: (1) b,EP, (2) a<b,, (3) byll{c,: Y&B} (4) by%c,. By the claim there
is dEA so that 0<d<c,a’y, dEP. Let by=bd'.

The case B=y+1. Let b, be constructed from a, b,, c, as b, was
from a, b, c,.

The case B is limit. Let uc A so that a<u<{b,:p<<B}. Then b, is
constructed from a, u, ¢, as b, was from a, b, c,.

Now, let xcU, a<x<{bg:B<a}, and set p=x.

The assertion 2° is obtained dualizing the above proof. —
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Lemma 3.7. Let a BA A satisfy H,, where k is an infinite cardinal.
Suppose A, p. are cardinals so that \, u<k, and (P,:a<<X), (Q,:a<p) are two
sequences of k-directed ultrafilters over A so- that for all a<}, B<u P,#Q,,

Then ( N\ PIN( (1 Q8)# @. We are assuming A, p>1.
a<h B<w

Proof. First we prove the following assertion.
Claim: PN( N 0§+ .
B<u

Proof of the claim: We construct a decreasing sequence az, B<<g so
that g,&P and @, Q5.

The case B=0. Since P+#Q, there is a,&P so that a,EQ5.

The case B=y+1. Assume a, has been defined for p<y. As P#(Q,,
there is ¢ P such that c&Qf. Thus, ca,&P. Since P is not principal,
there is x&P, x<ca,. Let qz=x. Observe that Qf is an ideal, and c¢&Qf,
‘hence a,& QG. / '

The limit case. Suppose B is limit. Since P is k-directed, there is xEP
such that x<a, for all p<<P. Let g;=x.

Hence, the claim is proved.

) Now, we proceed to the proof of the lemma. For that, we construct an
increasing sequence (b,:a<}) such that b,cP,. b.& (M 0.

B<m

If a=0, by the claim there is b,&P, such that b & ﬁ Qe
p<
If a=vy+1, by the claim there is xEPaﬂ( ﬂ Q@) Then x+b,EP,. By
the inductive hypothesis, b,& ﬁ 0§, thus x+5, E ﬂ Qi (observe that N Qf

B<w
is an ideal). So let b, ~x+b

Assume o is limit. We have b, ﬁ 0; for all y<a. Since Q s k-di-

B<u
rected, there is d, Qg such that for all y<a b,<d,. The set {b,:y<a} is
directed upward, thus by the condition H, there is x& 4 such that b,<x<d,

for all y<a, B<p. Hence, x& N Qf, and xEP,, so let b,=x.

B<w
Now, first assume A is finite. Define ¢=5,. Then

ce( n P.)N( is) 05%).

Suppose A is infinite. Then we can construct ¢ as b, was constructed for
limit «. Again, c&( F\ P)ﬂ( ﬂ 05). -

Lemma 3.8. Let a BA A satisfy H, (k is an infinite cardinal), and
(Pia<h), (Qa:B<<p) (A, n<k) are sequences of k-directed ultrafilters over A

so that for a<X, B<u P,#Q,. Suppose X,Y,ZCA, where 1¢-X, 07,
|X|+|Y|+|Z|<k, X is directed upward, Y is directed downward, X<Y, Z|< X,
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OL<[.L

Y|<Z, and X(( U Q)= 2, YC N P,. Then there is xC A such that X<x<Y,
x|Z, and x&( ﬁ Pa)ﬁ( N Qo). '
i : : a<<h B<u

To avoid trivialities, we may assume that 1€Y, 0&X i.e. X, Y# o

Proof: Let us define an increasing sequence (b,:a<<X) so that b,&P,,
<A By L. 3.6. there is b,CP, so that X<b,<Y, and b,||Z. Assume
(bo:p<a) has been defined. Then {bp p<a}<Y, so by the same lemma there
is b, P, such that b,||Z, and for all p<a b,<b,<Y.. Then {b,:x<A}<Y so
by the condition Ry there is bc A such that b <b<Y for all «<<, and b||Z.
Then X<b<Y, b||Z, and b& ﬂ P,.

Dualizing the above procedure, but taking {b} instead of Y, we can find
an element a so that X<a<b, a& ﬂ QB, and a||Z

By L 3.7. there is cE( ﬂ P,x)r\( ﬂ 0%). Let x=a+bc. Then a<x<b,
$0 X<x<Y and xHZ Slnce \ P, is a f11ter, N Q% an ideal, b, cE NP,

G<WL a<hA

and a, cC (O Q;, we have also xE( ﬂ P“)m( m Qa) —

<y .
‘Theorem 3.9. For every cardinal X, T y is the model completion of T,.

Proof: Obviously
H TAQT;. Now we prove:
(2) For each universal sentence &L (T), T ¢ implies T, —¢.

So assume TA o and supposse ~T, |-¢. Thus, there is a model
2[1—~T such that A |[—= J¢. Let ¢ be a quantlfxer-free formula such that 7o is
3%y (x, ... X,), and assume that U, ..., U, are all ultrafilter’s predicates
which occur in . Thus, I’ |—EIJ(a0—, e a_) for some a,, ..., a,&A, where
A is the reduct of 9 to the language L(T)U{Uo, wevs Uyt Let A be the
submodel of A’ generated by a,, ..., @, Then A’ =(A4",¥,, ..., V,) where
A" is a Boolean subalgebra of 4, and V,-=4U,ﬂA”, i=~0, ..., n. Hence, A"
is finite and has, say, k atoms. Tet B be an atomless B4, and cg, ..., ckéB

so that for all i<k ¢;0, for i) ¢i¢;=0, X ¢;=1. Hence, there is an

i<k
embedding [h:4"” —B so that- the atoms of A" are sent in Cos +vv» Ch_g-
Moreover, we may assume that % is in fact an inclusion. Then there are ultrafilters
P,, ..., P, of Bso that V,= A" (P, i=0, ..., n. Since A’ =14 (ay, ..., an),
we also have ~QS‘|_xIJ(a0, cvs @p), where B=(B, Py; ..., P, i.e. Bl=Te.
Obviously, T, =¢ and B|= T,,, what is contradiction to 581~1 ©. Hence (2)
holds.

For the moment, let us restrict to A<o. Thus; L(Tm) is countabl“e, 50
Blum’s -criterion, T. 2.12., can be applied. Also, we suppose A= (the casé
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A€o is handled in a similar way). Therefore, suppose B*|—T0, 3, A(e)|=T,,
where U(c) is a simple extension of U, B a | 4 |+-saturated model,.

B* B* [=T,
X
U NS A Ae) =T,
A C A B* is k*-saturated, |A|=*k.

We have to construct an embedding f: 9 (c) ~B* so that the displayed
© diagram commutes. Suppose U(c)= (4@ R),c, = (4(), Sy, T,),,,» Where
ceS,, ¢'&T,, ncw (R, are interpretations of ultrafilter simbols in 9 (c)). It
might be that there are, in fact, finitely many R, s with ¢ R, or finitely many
R, s with ¢'cR,, but in either case there is no difference in the proof).
Further, QI=(:4, Uw Vi)yeo so that U,CS,, V,CT, for all iCw, and B*=
=(B* P,, Q,),, so that U,CP,, ¥,CQ,. for all nCew. Let X={xE 4 ix<cl,
Y={p€A:y>c}, and Z={zEA4:z||c}. If we suppose c& A, what is merely
only worth-to assume, we have X<Y, 0CX, 1€Y, Z|< X, YI<Z, | X+ Y1+
+|Z|<k*, XN (U Q)= &, YC N P,. Since B* is k+-saturated, B* satisfies
N n<w

ncw
H{ and P,, Q, are k*-directed. Hence, the conditions of L. 3.8. are satisfied,

so ‘there is b&B* such that X<b<7, b||Z, b&( N PYN( N Q). Then the
ncw neow

map f defined by f(cx+c¢'y)=ax+a’y is an embedding from 9 (c) into B*,
and f|Ad=id,. ’

~ We proved the theorem for A<Lw. Now we consider the case A>w. Let
B, €|=T1, A|=T,, ACS, €, We have to show B, 0)oc4=C, a),_,. Let ¢ bel-
ong to the language L(T){a:ac A}. Then ¢ belongs to some finite reduct L’
of this language. Let (%', d),_,, (¥, d) icp be reducts of (B, a),_,, €, a),_,t0
the language L(T)UL'\U{d:dED}, where D is the Boolean subalgebra of A

generated by the constants which names occure in ¢. Assume B|=—=oq. Then
B'|=¢. By the first part of the proof, we have B'=6", so €|= o. Hence
(585 a)aEAE(@’ a)aEA' _I o

Now we list some consequences of this theorem.

Corollary 3.10. Let A be any cardinal. Then:

1° T; is submodel complete.

2° T allows eliminiation of quantifiers.

3° T is complete.

4° For A< M(T,), M(T2) are Jénsson classesiof models. If A>o IR (T),

m(T ;) are Jonsson classes of models with A\-Lowenheim-Skolem property (i e.
with A*-Léwenheim-Skolem property in the sense of [4], p. 84).

5° If A< o, universal-homogeneous models of T, are exactly saturated models
of Tr. If \>w and k>, universal homogeneous models of T, of cardinality
2k are exactly saturated models of T of cardinality =k.
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Proof: 1° 2° and 3° are consequences of the previous theorem. 4° The
case A<{ew foliows from T.3.9. and T.2.1. If 2>, by the proof of T.2.1.,
i T5 still have the amalgamation and the joint embedding properties, thus
the assertion holds.

5° if A<ew the assertion holds by the previous theorem and T.2.2.
Assume A>e. Then ||L(T)||=x. On the other hand,. arguments used in the
proof of T.2.2. can be extended so that they prove: Suppose [|[L(I'){|=A and T"
has the model completion T*. Then a model & of T', |4|=2*, is a full model
of T iff U is a satyrated model of I'*. . ,

Therefore, the assertion 5° holds. —

Remark 3.11. The statement 5° of the previous corollary can be stated
in the following form: For any cardinal A, universal-homogeneous models of T,
are exactly saturated models of T;. ‘
The cas¢ A<t of this assertion was proved in C. 3.10, so assume A>o.
We show that, in fact, there are no univérsal homogeneous models of T3 of

cardinality < 2*, neither saturated models of Ty of cardinality <2 First we
*
prove that there are no saturated models of T; of cardinality <2 Let

%A |=7T, assume ¥ is saturated, and A =(4, P,),<». Further, let :2A—2 and

5 “def
T (x) ={PS® (x):a <2}, where PlrgP, Po=pe 1t is easily seen that I1(x) is

finitely consistent, thus by the saturation of U there is a,& N PE® - Also,
) a~<h

o#{ implies a,7#ay, so |4[=2"

- Now we prove that there is no even a A-umiversal model of 7, of
cardinality less than 2. So assume ¥ is a A-universal model of T,, A=(4, Vo), _,.
Further, let B be a free B4 with A free generators @, B<<A, and assume a is
a free generator of B. Further, let for each a<<A P, be the ultrafilter of B

generated by {a}U{a;: B<at{ap:B>u, ay#a}, and also Q, generated by
{@YU{ap: B< o} J{a,: B>, a,#a}. Thus, for every ¢:A—2 a model B,=
=(B, U,),_, is defined as follows: If ¢ ()=1 then U,=P,, if ©()=0 then

U,=0Q,. In such case N Uﬁ(“);)(ag Pa)m(ag 0%), so a€ N U™ i.e.

a<A w<<h
O\ US®£ . Since U is A-universal, B, is embedded into 9, thus N VE@#~ &.
<A <A

Hence |4 |>2"
Thus, the assertion of the remark is proved.

Theorem 3.12. Let W= (A4, Pa<) be a model of Ts, k an infinite car--
dinal. Then: _ " C

1° If A is a k-saturated model, then A satisfies H,., and P, are'k-directed
ultrafilters. If k>N is an infinite cardinal, A satisfies H,,-and for all a<\P,
is k-directed, then W is a k-saturated model. -

. k
2° If k=sat () and k>0, then | A|=k™ + 2.
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Proof: First we prove 2°. So let k=sat (%), QII:T;. Thus, A is k-sa-
turated. As we have shown in the previous remark, |4|{>2" By C.2.25.

iA}}kvk. Hence, iA!>k£+2*.

Now we prove 1°. Assume |A|>2* First suppose that U is k-saturated.
By T.2.7. follows that A satisfies H,. Further, let XCP, |X|<k. Then
{e<x:x&X}U{P,(c)} is " finitely consistent set of formulas, thus by the
saturation of 9 there is an element acP,, a<X. Hence, P, is k-directed.

Now, suppose A4 satisfies H,, P;s are k-directed ultrafilters, and k>A.

We prove that 9 is k-saturated. Let IT(x) be a maximal nonoprincipal type
over a subset D of 4, |D|<k, and B the subalgebra of A generated by D.

T; allows elimination of quantifiers, thus II(x) is determinated by the set
IT' (x) of atomic and negatomic formulas contained in II (x). Further, assume U
is an ultrafilter’s predicate and 7(x) a Boolean term over B. Then # (x) = ax + bx’

for some a, b< B. Hence,

Ue(x) & U@AUE)VUGATU )

Thus, assuming UQI=Poc for some a, we have U (¢ (x)) €Il (x) iff acP,, xEP,,
or b&P,, x'EP,. Using the maximality of U we can find, as we did in
T.2.7., sets X,Y,Z so that II(x)|—==|TI(x), where F(x)={iz<x:aEX}U
U{x<£):bEY}U{£Hx:cEZ}U{fa(x):ocEI}U{fa(x'):ocEJ}, and INJ= o,
It )J=) By the consistency of II(x), sets X, ¥, Z and ultrafilters P, satisfy
the conditioos 'in L. 3.8. (observe that P, for a&J play the rolle of Q, in
L. 3.8.). Thus, by the same lemma there is x,CA4 which realizes II(x). —
It is interesting to see what these theorems assert for A<{w.

. ‘Example 3.13, First assume A is finite. Then every countable model of T, is
w-saturated. In fact, all models of T, are w-saturated, thus T;, is complete in the logic £,
For infinite k, %A |—= T; is k-saturated iff A4 satisfies Hy, and P,, ... P, are k-directed ult-

. Lk -
rafilters, If k=sat (%), then | A{>k~. In fact, we see that there is no difference between
T=T, and T;. so the most of theorems about 7; can be stated in a similar form, as they
were for T. .

The case A= is probably more interesting. We have:

No model of T, of cardinality <2 is w-saturated.

v A model A=(4, Py, ...) is k-saturated (for k>w)) iff A satisfies H, and P,, P,, ...
are k-directed ultrafilters.

There is an atomless BA of cardinality 2° which is e, -saturated and has 22¢ ,-dire-
cted ultrafilters. To see that, let B be a free B4 with 2° free generetors. Let D be a non-
principal ultrafilter over «w, and A=Be /D, the ultrapower of B. Then A is «,-saturated
(cf. [3], T. 6.1.1). On the other hand, there are 22“ distinct ultrafilters over B, and for every
‘ultrafilter U over B, U® /D is o -directed ultrafilter over 4, Hence, A has 22® «,-directed
ultrafilters. .

By Shelah’s result on the existence of P-points in N*=BN—N which is the Stone
space of 2° [F (F is the filter of cofinite sets over w), it is consistent with ZFC to assume
that there is no expansion of the BA 2“/F to an o,-saturated model of T,, even if
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29 /F is a w,-saturated model of T, (by E.2.30). However, if CH is -assumed,’ both Bo-
olean algebras 4 and 2 /F are o,-saturated models and of cardinality «,, thus, by the
uniqueness of (elementary equivalent) saturated models, 2% /Fco~A. Hence, assuming CH
we have: - : SN

1° There are 22“ w,-saturated ultrafilters over 2°/F, i.e, 22 P-points in the space

- N* (W, Rudrn, cf. [13]). - )
2° Given any two sequences (P,:ncw), (Q,:ncw) of «-saturated ultrafilters  over
29 /F, there is an automorphism of 2 /F so that f(P,)=Q,. This follows by the uniqueness
of saturated models; Q®/F, Py, P, ..)=Q"/[F, Q,, @,, ...) and both these models are

,-saturated, - ~ )

There are (at least) two ways of getting w,-saturated models of T, of cardinality

29 One is given in E, 2,30, and another one is by means of ultraproducts of countable
atomless Boolean algebras. If CH is assumed, isomorphic models are obtained, If CH is not
assumed, models obtained by ultraproduct construction have ,-saturated ultrafilters (at. least

2%), thus, again by Shelah’s result, it cannot be proved in ZFC alone that Boolean algebras
obtained by reduced products of Boolean algebras modulo the filter of cofinite subsets "of

are isomorphic to them (at least this is true for 2% /F), However, it is interesting -to see if
models within these two groups are (possibly) isomorphic, For example, it is easily seen that

for any two finite Boolean algebras 4, B holds A® /[F~B“|F (it follows from the fact that
29 |F=2%|Fx ... x2°[F).
It would bs of some interest to compute sat (4) for so obtained Boolean algebras.

4, Apﬁlications and remarks.

There will be several applications of the previous consideratins.

4.1. Model completion of the theory of distributive lattices.

Let 3 be the theory of distributive lattices and Z*=2+V xp(x<y) =
> dz(x<z<)+VxIy(x<y+VxIy(y<x)+Vxpz(x<y = Ju(zu=xA\
AzZ+u=Yy)).

" We shall prove that £* is a model completion of X. It is easy to prove
the following assertion:

Proposition 4.1.1. Let A be an atomless BA, U an ultrafilter and 1
a maximal ideal over A so that U#I°. Then (UNI +, -, <) |=2*% —

Let M=(M, +, -,<) be a distributive lattice. As it is well known there
is a lattice of sets F such that M~ (F, U, N, C). Let B be the field of sets

~ -~ “def :
generated F by. Obviously, B is a Boolean algebra. Let B(M )Te—B. We may
assume M C B (M). The following property of Boolean algebras is also well known.

Pfoposition 4.1.2. Let M be a distributive lattice, A. a BA, and
f:M—A a lattice embedding which preserves end points, if they exist in M.
Assume B is a Boolean subalgebra of A generated by f(M). Then B~B(M). -

1) S. Todordevi¢ observed that sat 2° /F)=, as a consequencé of a Hausdorff the-
orem (cf. [4] Theorem 14,14 and Lemma -14.21). 2
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Proposition 4.1.3. Z* js w-categorical.

Proof: Let S be a countable model of X and A=B(S). Then 4 is a_
countable atomless BA. Let U be the filter of 4 gene;atea By S, and 7 the
ideal of A also generated by S. Then U is an ultrafilter, I is a maximal ideal
of 51, and S=UNI By P. 3.1. T; is w-categorical, thus, * is w-categorical. -

Corollary 1° X* is complete. .

2° X* is model complete. —|
Theorem 4.1.5. I* is a model—completion of Z.

Proof: Obviously
1)) ' EQE*;
Now we prove
(2) Every model of X is embeddable into a model of X*.

By compactness theorem it suffices to prove this assertion for finitely
generated lattices, that is for finite distributive lattices. So suppose M is a
finite distributive lattice. Let us add two new elements to M, the lowest 0,
and the greatest 1, i.e. take N=MU{0, 1}, and assume N is  the corresponding
lattice. There ,is a countable atomless B4 A so that NCA. Also, there is an
ultrafilter P and a maximal ideal I over A so that M ng. By P. 4.1.1. (2)
holds.

Now we prove
(3) For every distributive lattice M, X*+A (M) is complete.

~ By compactness theorem and Lowenheim-Skolem theorem it suffices to
prove that for any countable A* B* such that MC A*, B*, (A* @), 18 ele-
mentary equivalent to (B*, a),c So assume M C A%, B*, where A* B* are
countable models of Z*, By P 4 1 3. we may assume that A* =PI, B*= oJ,
where P is an ultrafilter and 7 a maximal ideal of an atomless, countable
. BA C. The similar condition is assumed for Q,J and an atomless B4 D. Let
A be a Boolean subalgebra of C generated by M, and B Boolean subalgebra
of D generated also by M. We see that A~B(M Y=~ B.” Now, we prove that
there is an isomorphism f: (A P,, L) —>(B~QB,~JBSV where P=PNA, I,=ANI,
0z=0NB, Jg=JNB, and f|M id,,;. Observe that P, is an ultrafilter over 4.

Let x&A4. Then x has one of the following forms (a, b, a;, b;EM):
Xo=a, X, =b', x,=a+¥, x3=2a,.b;, Xy=a+2Za;b;, x;=b"+Za;b;, xg=a+
‘ i i i

+b +2aq bi. Observe that then x,, X, €PN, x,, x, CPNIC, x;EPN, Xy, X,€
epPenI-.

13 Publications de I’Institut Mathématique
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The map f(oca+g3b'+Y§]aib;)=oca+BE+YZ‘0,~5,~, where «, 8, y&{0, 1},

1
and X is the complement of x in B, defines an isomorphism f:(4, P, 1,)—
_>(~B: QB’ JB) '

<, P, N ~_(D,0Q,J) - By T. 3.9. T, is a model completion of
po T - - T,, thus, there is an isomorphism f*
Ul U so that the displayed diagram commutes.

(4, Py 10— (B, O, Jp) Hence, (4%, M), .1 =(B*, m)nen-

Remark 4.1.6. The theory X' of distributive lattices with endpoints
(the language L (X') is L(X) expanded by {0, 1}) has as a model-completion:
the theory of atomless Boolean algebras, more precizely, the theory of com-
plementary, distributive, dense lattices. Thus, universal homogeneous models
for X’ are exactly universal homogeneous Boolean algebras, i.e. saturated
atomless Boolean algebras. :

4.2. The filter of cofinite subsets of « is o -saturative.

In [16] the notion of saturative filter is introduced: A filter D over :a
set I is A-saturative iff for every family of models @,, icl, the reduced
product H (E/D is A-saturated.

The main theorem on saturative filters proved in [16] is:

Theorem 4.2.1. (T. 3.1. in [16]) Assume D is a leter over a set I.
D is A-saturative (\>w) Iff it satisfies the following conditions:
(1) - D is r-good, (2) The reduced product 2'/D is \-saturated, (3) D is incom-
plete. —

Let F be the filter of cofinite subsets of w. Obviously, F is incomplete.
By E. 2.30., the reduced product 2¢/F is w,-saturated.

Lemma 4.2.2. F is w;-good.

Proof: We have to show (cf. [3], p. 307) that for every monotonic
f:P, () —F there is a multiplicative g:P, (w)—F such that g<f(P,(») de-
notes the set of finite subsets of w). Thus, assume f: P, (0)—F is monotonic.
For ncw, define G,=N\{f(x):xCn+1}. For s={n,, ..., n}, let g(s)=

el G”k. Then g:P,(w)—F, g is multiplicative, and g<f. -

Therefore, we have the following property of the filter F of cofinite
subsets of w.

#

‘Proposition 4.2.3. F is o -saturative. —

For example, let n=({0, 1, ..., n=1}, <). Then, the reduced product
n®/F is a saturated ﬁeyténg’s algebra. By the way, as we have mentioned
fieyting’s algebras, let us say that every Heyting’s algebra which satisf.es the
separation principle H, also satisfies the condition R,.

4.3, Iﬁdependent families of sets. The proof of the existence of these
families and computing the number of ultrafilters over a set I goes back to B.
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Pospisil, F. Hausdorff, A. Tarski, D. Kurepa and others. However, this ap-
proach might be of an intere:t. : ' ‘

In L. 3.7. it.is shown that k-directed ultrafilters have the independence
property. This lemma can be proved quite easily for finite A, p. In fact,
something more holds:

Let 1:1 be any B4 and Py, ..., P,, Q,, ..., Q, ultrafilters over 4 so that
for i#j Pi#Q;. Then (N P)N(M @)+ o.

ism j<n
For the proof of this assertion, let P be any ultrafilter over 4, and
a,EP, a/ € Q;, for i<n. Let a=[—Ia,~. Then a= P and a& () Qi. Thus, there
i<n i<<n

is"a sequence b;, i<<m, such that b,cP;, b,c () Qj, for i<m. Let b= > b,.

Then b(N YN (N ©5). ) )

. As the consequence of this remark we have at once that the number of
ultrafilters over k (k is infinite) is 22"._ For that, consider a free Boo'ean
algebra 4 with k free generators a,, «<k. Then every ultrafilter P over 4 is
uniquelly determinated by a map¢:k—>2 and the set{a’®:a<k}CP. Thus,
the set ;% of all ultrafilters over A4 has the cardinality 2% Since | 4|=k, we
may assume |4|=k. Thus, by the above remark there is a family, that is above
o> of independent subsets of k of cardinality 2%, Hence, by the usual argu-
ment there are 22¢ yltrafilters. :

In E.3.13. we considered a free B4 B with 2° free generators. As we

have seen, its ultraprodust A=B“/D (D is a nonprincipal ultrafilter over )

has 22° @, — directed ultrafilters. On the other hand, we may assume c=|A‘!
(here ¢=2¢), since |4 |=c. Thus, by L.3.7. there is a family X of subsets of
¢ which is @, — independent and of cardinality 2¢ (», — independent means:
for every p: o —X, every @:w—2, ) pf(”);é &, also cf. [17]). From it follows:

neo

Proposition 4.3.2. There are 2¢w, — complete filters over .

, Proposition 4.3.3. Every , — free Boolean algebra of size 2¢ is
embeddable into the field of subsets of c.

4.4. Topological interpretations. By the Stone representation theorem, most
of the previous. results have topological interpretations. For an object, or notion

S of Boolean algebras, let S denote its topological dual in the cense of Stone
functor. Thus, for a BA B, B denotes the Stone space of J~3 For example, if

N\
F is the filter of cofinite subsets of w, it is easy to see that 2°/F= N*, where
N*=BN-—N, the growth of di:crete space on natural numbers.

Since the contravariant functor between the categories of Boolean algebras
and Stone spaces is in fact an isomorphism (i.e. a natural equivalence), it is
possible translation of most theorems formulated in terms of one category into
the terms of another.

In that sente we have the following: If a is a point of B then its topo-

2

logical dual 4 is the clopen set {p: p is an ultrafilter over 2’3 and acp}. If

13%
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F is a filter over B then F= {rch: FCp} (a closed subset of B). If I is an

ideal over B then I={ pEB: pNI+# @}, an open subset of B. If g is a Boolean
epimo:'phisrfl (embedding)fthen ¢ is a continuous embedding (epimorphism).
If p is k — directed ultrafilter over B, then p is a P(k) — point in B. In the
case k=w,, p is a P — point in B.

For an illustration we will obtain some well known theorems on the space
N*. We assume CH. W. Rudin has shown in [13] that every two P — points

p, g of N* can be interchanged by an autohomeomorphism of N*. We have
remarked already that the dual space of 2°/F (F is the Fréchet’s filter) is N¥,

thus, by E.3.13.2° it follows that not for only two P — points, but for any
two countable sequences of P -— points (p,: nEw), (g,; nEw), where for i#j,
Pi#p;, 9:#q;, there is an autohomeomorphism f of N* such that for all
nco f(pn)'—_qn

Al:o, we obtain very easily (under CH) that there are 22 P — points in
N* (W. Rudin). For the proof of this assertion, concider Boolean algebras
2¢/F, and . B®/D (D is a nonprincipal ultrafilter over ), where B is a free
BA with 2° free generators. Both this algebras are saturated (see E.3.13.) and
of cardinality ©,=2% so by uniqueness of saturated models 2¢/F~B*/D. By
E.3.13.1° it follows that 2¢/F has 2¢ o, — saturated ultrafilters, i.e. N* has
2¢ P — points.

The theorem of I I. Parovidenko (cf. [13], or Theorem in [17], p. 81)
which characterizes the space N* follows from the ¢, — saturation of the B4
2¢/F, uniquness of saturated models, and T.2.7.

- It is well known that the closed, infinite subsets of SN and N* are

of cardinality 22°. These are immediate consequnces of P.2.21 and Stone
representation theorem.
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