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0. Introduction

In [1] we introduced three classes of linear operators acting on a com-
mutative algebra ¥ over R or C. In order to make this paper self-contained
we shall briefly repeat those definitions.

Definition 0.1. We say that a linear operator on V belongs to the
class H(V) if the following condition is satisfied:

L(uv)%uLv if and only if uckerlL.

Definition 0.2. Suppose that L& H (V) and suppose that the following
condition is satisfied:

If x,, ..., x, are (ker L)-linearly independent and if
S Lx)=S wLlx,  O=1...,n
k=1 k=1

then u, ..., u,=ker L.
We then say that LEK¥).

Remark. We say that the vectors x,, ..., x, are (ker L)-linearly independent if the
n , ,

equality z uy x;=0, where uy, ..., u,cker L, implies u;~--- =u,=0,
k=1 :
Vectors x,, ..., x, are (ker L)-linearly dependent if there exist vectors u,, ..., 4,Eker L,

n

not all zero, such that Z uy xp=0,
k=1 .
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Definition 0.3. We say that L&D, (V) if for all u,vCV and for
fixed acker L we have o

L@wv)y=uLv+vLu+ o LulLy.

It was shown in [1] that D, (VYCKF)CHF).
Certain properties of those classes of operators, and particularly tho:e
connected with the equation in x:

P(L)x=0

where P is a polynomial over R or C, were examined in [1].

In this paper we shall first be concerned with the general linear n-th
order equation '

-(ipkv—k)xw (o=1)

k=0

where p,, ....p,, g&V are given vectors.
Finally we shall apply the obtained results to some functional equations.

In further text the term general solution is taken quite literally, i.e. it is
the solution which contains all solutions of the considered equation.

1. First order equations

Let L& H (V) and consider the equations
(1.1 Lx+px=q (p, 4=V)
(1.2) Lx+px=0 rev).

Theorem 1.1. If x, is a solution of (1.2), then its general solution has
‘the form x=ux,, where uckerL is arbztrary

Theorem 1.2. If x, is a solution of (1.1) and x, of (1.2), then the
general solution of (1.1) has the form x=x,+ux, where uckerL is arbitrary.

Theorem 1.3. If x, and x, are two distinct solutlons of (1.1), then its
general solution has the form

(1.3) x=x +u(x,—x),
where ucker L is arbitrary.

Proof  We shall only prove Theorem 1.3. It is easily verified that x,’
given by (1.3); is a solution of (1.1). Conversely, if x, and x, are solutions
of (1.1), i.e. if

(1.4 Lx, 4+ px,=q, Lx,+px,=gq,
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and if x is any other solution of (1.1), then from the equations (1.1) and (1. 4),
we get
L(x—x)+px—x)=0, L(x,—x)+p(x,—x,)=0,
and hence’
xX—x X, — X,
L(x—x) .  L(x,—x)

B

wherefrom follows (see Theorem 3 from [1])
X=X, =u(X,—X;) (uSkerL)
or (1.3).

2. We have established the form of the general solution of the equa-
tion (1.1). If we actually want to solve that equatlon we find that the hypot-
hesis LEH (V) is too weak.

We therefore suppose that L&D, (V) and write the general solution (1.3)
in the form

(2.1) ax+b=u (uckerL).
Applying L to (2.1) we find
(a+aLa)Lx+ (La)x= —Lb,
which together with (1.1) yields

La =) Lb g
a+ala ’ a+ala ’
ie.
(2.2) La=—PY 4, Lb= —q(a+aLa)
l—ap

v Hence, instead of solving the equation (1.1), it is enough to determine

particular solutions of simpler equations (2.2) and then to use the formula (2.1).
., ;

Examples. (i) If L=d—teD°’ this method leads to the standard general solution

of the first order linear differential equation:
—fpd d ' .
x=e Spar <C+f qe'[p tdt) (C arbitrary constant),

(i) If L=A, where Ax (f)=x (t+1)—x (¢), then AED,, and this method leads to the
general solution of the first order linear difference equation

t—1 b—1
«0=Ta-ro» H(t)+z T

“Tla-ro»
v=0

where II is an arbitrary function, periodic with period 1.
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3. Equations of order n

We now turn.to the nth order equations

{3.1) ( épkL""k)xzq

K=o
and (po=1),
(3.2) ' ( S p L) x=0

K=o /

where we suppose that L& K (V).

Theorem 3.1. If x,,.... x, are (ker L)-linearly - independent . solutions

n E
of (3.2), then its general solution is x= 7 u, X, where w.cker L are arbitrary.
; k=1

Theorem 3.2. If x,,...,Xx, are (ker‘L)-linearly independent solutions
of (3.2), and if y is a solution of (3.1), then the general solution of (3.1) is

n
X=y+ > ux;, where uyckerL are arbitrary.
k=1

Theorem 3.3. If x, ... ,‘x,,+1 are (ker L)-linearly indepeﬁdent solutions
of (3.1), then its general solution is given by _ '

n
3.3) X=X+ Z Ui (X — Xpi1) s
k=1
where u,Cker L are arbitrary.
Proof. We shall only prove Theorem 3.3. It is easily verified that x
given by (3.3) satisfies the equation (3.1). Conversely, first note that if

Xys e Xpy, are (kerL)-linearly independent, then x, —x,,,, ..., X,—X,,;, are
also (ker L)-linearly independent vectors. :

Suppose now that x,, ..., x,,, are solutions of (3.1), i.e. that
(3.4) (zpku—k)xv:q w=1,...,n+1).
k=0
If x is any other solution of (3.1), then from (3.1) and (3.4) we get

(ipku-k) (x=%,,)=0

k=0

(3.5) .
( S pkL"-k) (Ga=%ps) =0  (=1,...,n).
k=0 .
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Eliminating the coefficients p,, ..., p, from the system (3.5) we find

X x, ... :Xn
Lx LXx, LX,
(3.6) . =0,
"X L"X, - L"X,
where X=}c——xn+1, Xy=Xxy—Xx,,, (v=1, ..., n).

From (3.6) follows that there exist u,, ..., ¥,&V such that

(3.7 - DX=3 uL'X, (v=0,1,...,n)
k=1
which implies

(3.8) w3 uka)= Su X, (=10
- V=1 k=1

~Therefore, since X,, ..., X, are (ker L)-linearly independent, and LE K (V),
from (3.8) follows that u,, ..., u,&kerL. Hence, from (3.7) for v=0 we get
the required result.

4. Variation of parameters

In this part we shall show how it is possible to obtain a solution of (3.1),
provided that the general solution of (3.2) is known. In order to do that we
again have to suppose that L&D, (V). We first prove a lemma.

Lemma. Suppose that the equation (I+-aL)x=0 has the unique solu-
tion x=0. If the vectors x, ..., x, are (ker L)-linearly independent then the
vectors x;+olx,, ..., x,+oLx, are also (ker L)-linearly independent.

Proof. Let u,...,u,EkerL be arbitrary, and put

L (‘xl + OCLX1)+ T Y, (xn+ OCan)=0,
or equivalently ‘

4.1 wx;+ - 4ux,+aL@Wx+---+u,x,)=0.
From the hypothesis follows that (4.1) implies
u, X+ - - +u,x,=0,

and since Xx;, ..., X, are (ker L)linearly independent, we conclude that
=---=u,=0. :

Theorem 4.1. Suppose that L&D, (V) and that the general solution
of (3.2) is known. The problem of determining a particular solution of the n-th
order equation (3.1) can be reduced to the problem of finding particular solutions
of n first order equations of the form Lu,=y, (k=1,...,n).
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Proof The method we employ is, in fact, the well known variation
of parameters method. Indeed, the general solution of the equation (3.2) has
the form ‘

n

4.2) | X = Z Uy Xy,

k=1
where x;, ..., x, are (ker L)-linearly independent solutions of (3.2) and
u,, ..., u,Eker L are arbitrary. Suppose that u, ¢ ker L. From (4.2) we find
4.3) Lx=3 (uy Lx;+x; Luy -+ o Lu, Lxy).
K=1
If we put

> (x Lug+ o Luy Lx) =0,
k=1

(4.3) becomes

(4.4) ) Lx= 3 u,Lx.
k=1

Again, from (4.4) follows

n
L2x= z (ukLZ xk+kaLuk+“LukL2 xk)a
k=1

L*x=73 u, L?xy,
k=1
provided that

z (ka Luk"i‘dLukLz xk)=0
1 :

k=
Continuing this procedure we arrive at
Lr=tx =5 w L1 x,
K=1
with
S (L2 x Lug + o Lu L' %) =0.
k=1 '
Finally,
Lrx = (uL" X+ L' xp Ly + o Lug LX),
k=1
and substituting the obtained values for-x, Lx, ..., L"x into (3.1) we get

@5 S (L % Lug + o Lug L x,) = g.

k=1
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The system of equations cpnsisting of (4.5) and the equations

4.6) S (L~ x Ly +a Lup LY x,) = 0 v=1,...,n-1)
k=1
is a linear system in Lu,, ..., Lu,. Since the vectors x,,...,x, are (kerL)-

-linearly independent, in virtue of the -Lemma we see that the vectors
X, 4aLx,, ..., x,+aLx, are also (ker L)-linearly independent, and hence using
the results from [1] we conclude that the determinant of the considered system
is not zero, which means that we can solve the system (4.5)—(4.6) to obtain

Lu,=y,...,Lu,=y,.

This proves the theorem.

5. A functional equation

In [1] we gave some important interpretations of the operator L, such

0 0 . . .
as »i, f—+g—, A, fA, etc. We now give one more interpretation of those
dx ox 0y '

operators.

Let o:R-—>R be a given function, and define the functions ' VIR
@,:R=>R by: o (x) =0 (x), o,*)=0(0(x),..., ie.

0 () =0 (X), op(X)=0(u,(x) k=1,2,...,n-1).

Consider the functional equation

G f(0,X)+P () f (@ X) + -« - Py (%) f (00, %)+ P, (x) [ (x) =g (x),

where P, ..., P,, q are given functions, f is the unknown function, and w, x
denotes w,(x) (k=1, ..., n). '

If we define the operator L by
(5.2) Lf (x) = f (o () —f (%),
‘then clearly

k i k
Lf(x)zz(_l)v( )f(mvx) k=1,..., n
v=0 v

where o, x=ux.
Hence the equation (5.1) can be written in the form

5.3 Lf)+p )L f X+ - + P ()L () +p, () () =g (%),

where the coefficients p,, ..., p, are uniquely determined by the given coeffi-
cients P, ..., P, f

ne
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Moreover, it is easily verified that the operator L,. defined by (5.2)
belongs to the class D, (V), where V is, in this case, the algebra of all real
functions. Thus all the results from Sections 3 and 4 (i.e. Theorems 3.1, 3.2,
3.3, 4.1) regarding the structure of the general solution of (5.3) can be applied
to that equation, and hence also to the equation (5.1).

In particular, if Py, ..., P, are constants (which implies that p,, ..., p,
are also constants) we may apply a result from [1] to get a better picture of
the general solution of (5.1).

Namely, in [1] among other things we proved the followmg theorem.
Suppose that P, is an n-th degree polynomial over R (or. C) and that
LED, (V). If there exist distinct characteristic ‘values A, ..., \, of L such

that P,(0)=0 (k=1,...,n) and if x,, ..., x, are the corresponding characte-
ristic vectors, then the general solution of the equation P,(L)x=0 .is' given

by x=3 ux, where wCkerL are arbitrary.
k=1

Applying those results to the equation (5.3), where p,, ..., p, are con-
stants, we see that the problem of determmmg the general solution of (5 3).
is reduced to:

() finding one particular solution of (5.3);

(i) solving the equation N+p W'+ ... +p, A+p,=0, which we
suppose to have n distinct roots A, ..., A,; ~

(iii) finding the general solution of the equation f(w (x))=f(x);

(iv) finding a particular solution for each equation f(o (x))= (1 +A)f (x)
k=1,...,n. . .

6. An example

Let o(x)=ax, where o is a positive consiant. Then oy (x)=a*x
(k=1, ..., n). Any equation

6.1) f@)+Pf@ ')+ +P,  f@x)+P,f(X)=q(x)  (P,ER)
can be written in the form ,
L +p, L+ - 4 pp L p, D () =g (%) (PER),

where Lf (x) =f (ax) —f(x), If (x)=F(%).

Suppose that A, ..., A, are distinct roots of the polynomial
(6.2) Np N g,

The general solution of the equation L:f(x) =0, i.e. f(ax)=f(x)is given by

. f®=T(og,x), | |

where II is an arbitrary periodic function with period 1.
Finally x'°2.(¢+» js a particular solution of the equation Lf(x)=2f(x)

e flax)=1+21)f(x).
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Hence, thé general solution of (6.1) is given by "
f@=F@+ 3 x"*="* I, (log x)

k=1

where F is a particular solution of (6.1) and IL,, ..., II, are arbitrary periodic
functions with period 1.

Moreover, in virtue of Theorem 4.1. we see that knowing 2, ..., A, we
can find F(x).

Remark. If the polinomial (6.2) has multiple roots, it is also possible to arrive at
the general solution of (6.1), but in a somewhat more complicated way.

7. A functional equation studied by Poinsot, Pompeiu and Montel
According to Pompeiu [3], Poinsot [2] reduced a geometric problem in
conection with the centroid of a triangle to the following functional equation
(7.1) 2fCx)=fx)+x,
and, assuming that f(x) is contiﬂuous, found - the solutions of that equation,

namely f(x)= % .

Pompeiu [3] considered the same functional equation and, using an inte-
resting method, found that (7.1) is also satisfied by

(7.2) fx)= < + % (C arbitrary constant)
x

claiming that (7.2) is the general solution of (7.1) which is continuous in the
neighbourhood of x=0.

A year later Pompeiu [4] published that Montel wrote to him about the
equation (7.1) and showed that it is satisfied by any function of the form

(13) F@=2 1L g0g),
3 x

where ¢ is an arbitrary periodic function with period log 2.

We shall, apply the methods exposed above to the equation (7.1), which
is clearly a special case of (6.1), and will show that (7.3) is indeed the general
solution of that equation.

Let Lf(x)=f(2x)—f(x). Then ker L={II(log,x)|IT periodic with pe-
riod 1}. The equation (7.1) can be written as

Lf(x)+%f(x)=%x,

and using the method of Section 2 we see that its general solution is given by
a (%) £ (x)+b (x) = (log, x),
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where Il is an arbitrary periodic function with perlod 1, and a and b are
particular solutions of the system

1
La=-— 2 a; Lb= ~-Imx(a+La),
L 2 |
: 2
or, equivalently,
A7.4) a(2x)=2a(x); b2x)-b(x)= ~~§exa(2x).

Hence, we may take a(x)=wx, and the second equation in (7.4) becomes
‘ b(2x)—b(x)= —x? '

It is evident that a solution of the form b(x)=Cx*(C= const) should
be attempted. We easily find C= —1/3.

Therefore the general solution f (x) of (7.1) is given by

Xf(x) —— x2 I (Iog2 x)
ie. ;
f@="+L 1 (0g, 0
3 x ,

where Il has the same meaning as above.

Remark. Two functional equations which generalise the equation (7.1), namely
: mr—1 3
mf (mx) =f(x) X (mEN)

F@ex)y=af(x)+px) @>0

were also considered in [4). Clearly, both are spemal cases of (6,1) and can be solved by
the methods given in this paper,

REFERENCES

[11J.D. Kedkid, On some classes of lmear equatzons Publ. Inst, Math. (Beograd)
24 (38) (1978), 89—97. )

[2] L. Poinsot, Eléments de sfatzque Paris. 1811, pp. 175--178.

[31 D, Pompeiw, Une équation fonctionnelle & propos du centre de gravzté de Taire
d’un trzangle, Bull, Math, Phys, Ecole, Polytechn. Bucarest 8 (1937). 3—35.

{41 D. Pompeiu, Sur Péquation fonctwnelle de Poinsot et autres équations analogzzes,
Bull. Math. Phys. Ecole, Poiytechn Bucarest 9 (1938), 54—56,

Tikveska 2
11000 Beograd



	135.tif
	136.tif
	137.tif
	138.tif
	139.tif
	140.tif
	141.tif
	142.tif
	143.tif
	144.tif

