ON SOME CLASSES OF LINEAR EQUATIONS, II

Jovan D. Kečkić

(Received February 16, 1979)

0. Introduction

In [1] we introduced three classes of linear operators acting on a commutative algebra V over \mathbf{R} or \mathbf{C} . In order to make this paper self-contained we shall briefly repeat those definitions.

Definition 0.1. We say that a linear operator on V belongs to the class H(V) if the following condition is satisfied:

$$L(uv) = uLv$$
 if and only if $u \in \ker L$.

Definition 0.2. Suppose that $L \in H(V)$ and suppose that the following condition is satisfied:

If x_1, \ldots, x_n are $(\ker L)$ -linearly independent and if

$$\sum_{k=1}^{n} L^{\nu}(u_{k} x_{k}) = \sum_{k=1}^{n} u_{k} L^{\nu} x_{k} \qquad (\nu = 1, \ldots, n)$$

then $u_1, \ldots, u_n \in \ker L$.

We then say that $L \in K(V)$.

Remark. We say that the vectors x_1, \ldots, x_n are (ker L)-linearly independent if the equality $\sum_{k=1}^n u_k x_k = 0$, where $u_1, \ldots, u_n \in \ker L$, implies $u_1 = \cdots = u_n = 0$.

Vectors x_1, \ldots, x_n are (ker L)-linearly dependent if there exist vectors $u_1, \ldots, u_n \in \ker L$, not all zero, such that $\sum_{k=1}^n u_k x_k = 0$.

Definition 0.3. We say that $L \in D_{\alpha}(V)$ if for all $u, v \in V$ and for fixed $\alpha \in \ker L$ we have

$$L(uv) = uLv + vLu + \alpha LuLv.$$

It was shown in [1] that $D_{\alpha}(V) \subset K(V) \subset H(V)$.

Certain properties of those classes of operators, and particularly those connected with the equation in x:

$$P(L) x = 0$$

where P is a polynomial over \mathbf{R} or \mathbf{C} , were examined in [1].

In this paper we shall first be concerned with the general linear n-th order equation

$$\left(\sum_{k=0}^{n} p_k L^{n-k}\right) x = q \qquad (p_0 = 1)$$

where $p_1, \ldots, p_n, q \in V$ are given vectors.

Finally we shall apply the obtained results to some functional equations.

In further text the term *general solution* is taken quite literally, i.e. it is the solution which contains all solutions of the considered equation.

1. First order equations

Let $L \in H(V)$ and consider the equations

$$(1.1) Lx + px = q (p, q \in V)$$

$$(1.2) Lx + px = 0 (p \in V).$$

Theorem 1.1. If x_1 is a solution of (1.2), then its general solution has the form $x = ux_1$, where $u \in \ker L$ is arbitrary.

Theorem 1.2. If x_1 is a solution of (1.1) and x_2 of (1.2), then the general solution of (1.1) has the form $x = x_1 + ux_2$ where $u \in \ker L$ is arbitrary.

Theorem 1.3. If x_1 and x_2 are two distinct solutions of (1.1), then its general solution has the form

$$(1.3) x = x_1 + u(x_2 - x_1),$$

where $u \in \ker L$ is arbitrary.

Proof. We shall only prove Theorem 1.3. It is easily verified that x_1 given by (1.3), is a solution of (1.1). Conversely, if x_1 and x_2 are solutions of (1.1), i.e. if

(1.4)
$$Lx_1 + px_1 = q, \qquad Lx_2 + px_2 = q,$$

and if x is any other solution of (1:1), then from the equations (1.1) and (1.4) we get

$$L(x-x_1)+p(x-x_1)=0,$$
 $L(x_2-x_1)+p(x_2-x_1)=0,$

and hence

$$\begin{vmatrix} x - x_1 & x_2 - x_1 \\ L(x - x_1) & L(x_2 - x_1) \end{vmatrix} = 0,$$

wherefrom follows (see Theorem 3 from [1])

$$x - x_1 = u(x_2 - x_1) \qquad (u \in \ker L)$$

or (1.3).

2. We have established the form of the general solution of the equation (1.1). If we actually want to solve that equation, we find that the hypothesis $L \in H(V)$ is too weak.

We therefore suppose that $L \in D_{\alpha}(V)$ and write the general solution (1.3) in the form

$$(2.1) ax + b = u (u \in \ker L).$$

Applying L to (2.1) we find

$$(a + \alpha La) Lx + (La) x = -Lb,$$

which together with (1.1) yields

$$\frac{La}{a+\alpha La}=p, \qquad \frac{Lb}{a+\alpha La}=-q,$$

i.e.

(2.2)
$$La = \frac{p}{1-\alpha p}a, \qquad Lb = -q(a+\alpha La).$$

Hence, instead of solving the equation (1.1), it is enough to determine particular solutions of simpler equations (2.2) and then to use the formula (2.1).

Examples. (i) If $L = \frac{d}{dt} \in D_0$, this method leads to the standard general solution of the first order linear differential equation:

$$x = e^{-\int p \, dt} \left(C + \int q e^{\int p \, dt} \, dt \right)$$
 (C arbitrary constant).

(ii) If $L = \Delta$, where $\Delta x(t) = x(t+1) - x(t)$, then $\Delta \in D_1$, and this method leads to the general solution of the first order linear difference equation

$$x(t) = \prod_{v=0}^{t-1} (1-p(v)) \left(\Pi(t) + \sum_{\mu=0}^{b-1} \frac{q(\mu)}{\prod_{v=0}^{\mu-1} (1-p(v))} \right),$$

where Π is an arbitrary function, periodic with period 1.

3. Equations of order n

We now turn to the nth order equations

(3.1)
$$\left(\sum_{k=0}^{n} p_k L^{n-k}\right) x = q$$
 and
$$\left(\sum_{k=0}^{n} p_k L^{n-k}\right) x = 0$$

$$\left(\sum_{k=0}^{n} p_k L^{n-k}\right) x = 0$$

where we suppose that $L \in K(V)$.

Theorem 3.1. If x_1, \ldots, x_n are $(\ker L)$ -linearly independent solutions of (3.2), then its general solution is $x = \sum_{k=1}^{n} u_k x_k$, where $u_k \in \ker L$ are arbitrary.

Theorem 3.2. If x_1, \ldots, x_n are (ker L)-linearly independent solutions of (3.2), and if y is a solution of (3.1), then the general solution of (3.1) is $x = y + \sum_{k=1}^{n} u_k x_k$, where $u_k \in \ker L$ are arbitrary.

Theorem 3.3. If x_1, \ldots, x_{n+1} are (ker L)-linearly independent solutions of (3.1), then its general solution is given by

(3.3)
$$x = x_{n+1} + \sum_{k=1}^{n} u_k (x_k - x_{n+1}),$$

where $u_k \in \ker L$ are arbitrary.

Proof. We shall only prove Theorem 3.3. It is easily verified that x given by (3.3) satisfies the equation (3.1). Conversely, first note that if x_1, \ldots, x_{n+1} are $(\ker L)$ -linearly independent, then $x_1 - x_{n+1}, \ldots, x_n - x_{n+1}$ are also $(\ker L)$ -linearly independent vectors.

Suppose now that x_1, \ldots, x_{n+1} are solutions of (3.1), i.e. that

(3.4)
$$\left(\sum_{k=0}^{n} p_{k} L^{n-k}\right) x_{v} = q \qquad (v = 1, \ldots, n+1).$$

If x is any other solution of (3.1), then from (3.1) and (3.4) we get

(3.5)
$$\left(\sum_{k=0}^{n} p_k L^{n-k}\right) (x - x_{n+1}) = 0$$

$$\left(\sum_{k=0}^{n} p_k L^{n-k}\right) (x_{\nu} - x_{n+1}) = 0 \qquad (\nu = 1, \dots, n).$$

Eliminating the coefficients p_1, \ldots, p_n from the system (3.5) we find

(3.6)
$$\begin{vmatrix} X & X_1 & \cdots & X_n \\ LX & LX_1 & & LX_n \\ \vdots & & & \\ L^n X & L^n X_1 & & L^n X_n \end{vmatrix} = 0,$$

where $X = x - x_{n+1}$, $X_{\nu} = x_{\nu} - x_{n+1}$ ($\nu = 1, \ldots, n$).

From (3.6) follows that there exist $u_1, \ldots, u_n \in V$ such that

(3.7)
$$L^{\nu}X = \sum_{k=1}^{n} u_{k}L^{\nu}X_{k} \qquad (\nu = 0, 1, ..., n)$$

which implies

(3.8)
$$L^{\nu}\left(\sum_{k=1}^{n} u_{k} X_{k}\right) = \sum_{k=1}^{n} u_{k} L^{\nu} X_{k} \qquad (\nu = 1, \ldots, n).$$

Therefore, since X_1, \ldots, X_n are (ker L)-linearly independent, and $L \in K(V)$, from (3.8) follows that $u_1, \ldots, u_n \in \ker L$. Hence, from (3.7) for v = 0 we get the required result.

4. Variation of parameters

In this part we shall show how it is possible to obtain a solution of (3.1), provided that the general solution of (3.2) is known. In order to do that we again have to suppose that $L \in D_{\alpha}(V)$. We first prove a lemma.

Lemma. Suppose that the equation $(I+\alpha L)x=0$ has the unique solution x=0. If the vectors x_1, \ldots, x_n are $(\ker L)$ -linearly independent then the vectors $x_1+\alpha Lx_1, \ldots, x_n+\alpha Lx_n$ are also $(\ker L)$ -linearly independent.

Proof. Let $u_1, \ldots, u_n \in \ker L$ be arbitrary, and put

$$u_1(x_1 + \alpha Lx_1) + \cdots + u_n(x_n + \alpha Lx_n) = 0,$$

or equivalently

(4.1)
$$u_1 x_1 + \cdots + u_n x_n + \alpha L (u_1 x_1 + \cdots + u_n x_n) = 0.$$

From the hypothesis follows that (4.1) implies

$$u_1 x_1 + \cdot \cdot \cdot + u_n x_n = 0,$$

and since x_1, \ldots, x_n are (ker L)-linearly independent, we conclude that $u_1 = \cdots = u_n = 0$.

Theorem 4.1. Suppose that $L \in D_{\alpha}(V)$ and that the general solution of (3.2) is known. The problem of determining a particular solution of the n-th order equation (3.1) can be reduced to the problem of finding particular solutions of n first order equations of the form $Lu_k = y_k$ (k = 1, ..., n).

Proof. The method we employ is, in fact, the well known variation of parameters method. Indeed, the general solution of the equation (3.2) has the form

$$(4.2) x = \sum_{k=1}^{n} u_k x_k,$$

where x_1, \ldots, x_n are (ker L)-linearly independent solutions of (3.2) and $u_1, \ldots, u_n \in \ker L$ are arbitrary. Suppose that $u_k \notin \ker L$. From (4.2) we find

(4.3)
$$Lx = \sum_{k=1}^{n} (u_k Lx_k + x_k Lu_k + \alpha Lu_k Lx_k).$$

If we put

$$\sum_{k=1}^{n} (x_k L u_k + \alpha L u_k L x_k) = 0,$$

(4.3) becomes

$$(4.4) Lx = \sum_{k=1}^{n} u_k Lx_k.$$

Again, from (4.4) follows

$$L^{2}x = \sum_{k=1}^{n} (u_{k} L^{2} x_{k} + L x_{k} L u_{k} + \alpha L u_{k} L^{2} x_{k}),$$

i.e.

$$L^2 x = \sum_{k=1}^n u_k L^2 x_k,$$

provided that

$$\sum_{k=1}^{n} \left(Lx_k Lu_k + \alpha Lu_k L^2 x_k \right) = 0$$

Continuing this procedure we arrive at

$$L^{n-1} x = \sum_{k=1}^{n} u_k L^{n-1} x_k,$$

with

$$\sum_{k=1}^{n} (L^{n-2} x_k L u_k + \alpha L u_k L^{n-1} x_k) = 0.$$

Finally,

$$L^{n} x = \sum_{k=1}^{n} (u_{k} L^{n} x_{k} + L^{n-1} x_{k} L u_{k} + \alpha L u_{k} L^{n} x_{k}),$$

and substituting the obtained values for $x, Lx, \ldots, L^n x$ into (3.1) we get

(4.5)
$$\sum_{k=1}^{n} (L^{n-1} x_k L u_k + \alpha L u_k L^n x_k) = q.$$

The system of equations consisting of (4.5) and the equations

(4.6)
$$\sum_{k=1}^{n} (L^{\nu-1} x_k L u_k + \alpha L u_k L^{\nu} x_k) = 0 \qquad (\nu = 1, \ldots, n-1)$$

is a linear system in Lu_1, \ldots, Lu_n . Since the vectors x_1, \ldots, x_n are (ker L)-linearly independent, in virtue of the Lemma we see that the vectors $x_1 + \alpha Lx_1, \ldots, x_n + \alpha Lx_n$ are also (ker L)-linearly independent, and hence using the results from [1] we conclude that the determinant of the considered system is not zero, which means that we can solve the system (4.5)—(4.6) to obtain

$$Lu_1 = y_1, \ldots, Lu_n = y_n.$$

This proves the theorem.

5. A functional equation

In [1] we gave some important interpretations of the operator L, such as $\frac{d}{dx}$, $f\frac{\partial}{\partial x} + g\frac{\partial}{\partial y}$, Δ , $f\Delta$, etc. We now give one more interpretation of those operators.

Let $\omega: \mathbf{R} \to \mathbf{R}$ be a given function, and define the functions $\omega_1, \ldots, \omega_n: \mathbf{R} \to \mathbf{R}$ by: $\omega_1(x) = \omega(x)$, $\omega_2(x) = \omega(\omega(x))$, ..., i.e.

$$\omega_1(x) = \omega(x), \quad \omega_{k+1}(x) = \omega(\omega_k(x))$$
 $(k = 1, 2, \ldots, n-1).$

Consider the functional equation

$$(5.1) f(\omega_n x) + P_1(x) f(\omega_{n-1} x) + \cdots + P_{n-1}(x) f(\omega_1 x) + P_n(x) f(x) = q(x),$$

where P_1, \ldots, P_n , q are given functions, f is the unknown function, and $\omega_k x$ denotes $\omega_k(x)$ $(k=1,\ldots,n)$.

If we define the operator L by

(5.2)
$$Lf(x) = f(\omega(x)) - f(x),$$

then clearly

$$L^{k}f(x) = \sum_{\nu=0}^{k} (-1)^{\nu} {k \choose \nu} f(\omega_{\nu} x) \qquad (k=1,\ldots,n)$$

where $\omega_0 x = x$.

Hence the equation (5.1) can be written in the form

$$(5.3) L^n f(x) + p_1(x) L^{n-1} f(x) + \cdots + p_{n-1}(x) L f(x) + p_n(x) f(x) = q(x),$$

where the coefficients p_1, \ldots, p_n are uniquely determined by the given coefficients P_1, \ldots, P_n .

Moreover, it is easily verified that the operator L, defined by (5.2) belongs to the class $D_1(V)$, where V is, in this case, the algebra of all real functions. Thus all the results from Sections 3 and 4 (i.e. Theorems 3.1, 3.2, 3.3, 4.1) regarding the structure of the general solution of (5.3) can be applied to that equation, and hence also to the equation (5.1).

In particular, if P_1, \ldots, P_n are constants (which implies that p_1, \ldots, p_n are also constants) we may apply a result from [1] to get a better picture of the general solution of (5.1).

Namely, in [1] among other things we proved the following theorem.

Suppose that P_n is an n-th degree polynomial over \mathbf{R} (or \mathbf{C}) and that $L \in D_{\alpha}(V)$. If there exist distinct characteristic values $\lambda_1, \ldots, \lambda_n$ of L such that $P_n(\lambda_k) = 0$ $(k = 1, \ldots, n)$ and if x_1, \ldots, x_n are the corresponding characteristic vectors, then the general solution of the equation $P_n(L) x = 0$ is given

by
$$x = \sum_{k=1}^{n} u_k x_k$$
 where $u_k \in \ker L$ are arbitrary.

Applying those results to the equation (5.3), where p_1, \ldots, p_n are constants, we see that the problem of determining the general solution of (5.3) is reduced to:

- (i) finding one particular solution of (5.3);
- (ii) solving the equation $\lambda^n + p_1 \lambda^{n-1} + \cdots + p_{n-1} \lambda + p_n = 0$, which we suppose to have *n* distinct roots $\lambda_1, \ldots, \lambda_n$;
 - (iii) finding the general solution of the equation $f(\omega(x)) = f(x)$;
- (iv) finding a particular solution for each equation $f(\omega(x)) = (1 + \lambda_k)f(x)$ (k = 1, ..., n).

6. An example

Let $\omega(x) = \alpha x$, where α is a positive constant. Then $\omega_k(x) = \alpha^k x$ (k = 1, ..., n). Any equation

(6.1)
$$f(\alpha^n x) + P_1 f(\alpha^{n-1} x) + \cdots + P_{n-1} f(\alpha x) + P_n f(x) = q(x)$$
 $(P_n \in \mathbb{R})$

can be written in the form

$$(L^n+p_1L^{n-1}+\cdots+p_{n-1}L+p_nI)f(x)=q(x)$$
 $(p_k\in \mathbb{R}),$

where $Lf(x) = f(\alpha x) - f(x)$, Lf(x) = f(x).

Suppose that $\lambda_1, \ldots, \lambda_n$ are distinct roots of the polynomial

$$(6.2) \lambda^n + p_1 \lambda^{n-1} + \cdots + p_n.$$

The general solution of the equation Lf(x) = 0, i.e. $f(\alpha x) = f(x)$ is given by

$$f(x) = \Pi(\log_{\alpha} x),$$

where Π is an arbitrary periodic function with period 1.

Finally $x^{\log_{\alpha}(1+\lambda)}$ is a particular solution of the equation $Lf(x) = \lambda f(x)$ i.e. $f(\alpha x) = (1+\lambda)f(x)$.

Hence, the general solution of (6.1) is given by

$$f(x) = F(x) + \sum_{k=1}^{n} x^{\log_{\alpha}(1+\lambda_k)} \prod_{k} (\log x)$$

where F is a particular solution of (6.1) and Π_1, \ldots, Π_n are arbitrary periodic functions with period 1.

Moreover, in virtue of Theorem 4.1. we see that knowing $\lambda_1, \ldots, \lambda_n$ we can find F(x).

Remark. If the polinomial (6.2) has multiple roots, it is also possible to arrive at the general solution of (6.1), but in a somewhat more complicated way.

7. A functional equation studied by Poinsot, Pompeiu and Montel

According to Pompeiu [3], Poinsot [2] reduced a geometric problem in conection with the centroid of a triangle to the following functional equation

$$(7.1) 2f(2x) = f(x) + x,$$

and, assuming that f(x) is continuous, found the solutions of that equation, namely $f(x) = \frac{x}{3}$.

Pompeiu [3] considered the same functional equation and, using an interesting method, found that (7.1) is also satisfied by

(7.2)
$$f(x) = \frac{C}{x} + \frac{x}{3}$$
 (C arbitrary constant)

claiming that (7.2) is the general solution of (7.1) which is continuous in the neighbourhood of x = 0.

A year later Pompeiu [4] published that Montel wrote to him about the equation (7.1) and showed that it is satisfied by any function of the form

(7.3)
$$f(x) = \frac{x}{3} + \frac{1}{x} \varphi(\log x),$$

where φ is an arbitrary periodic function with period log 2.

We shall apply the methods exposed above to the equation (7.1), which is clearly a special case of (6.1), and will show that (7.3) is indeed the general solution of that equation.

Let Lf(x) = f(2x) - f(x). Then $\ker L = \{\Pi(\log_2 x) \mid \Pi \text{ periodic with period 1}\}$. The equation (7.1) can be written as

$$Lf(x) + \frac{1}{2}f(x) = \frac{1}{2}x,$$

and using the method of Section 2 we see that its general solution is given by

$$a(x)f(x) + b(x) = \Pi(\log_2 x),$$

where Π is an arbitrary periodic function with period 1, and a and b are particular solutions of the system

$$La = \frac{\frac{1}{2}}{1 - \frac{1}{2}}a;$$
 $Lb = -\frac{1}{2}x(a + La),$

or, equivalently,

(7.4)
$$a(2x) = 2a(x); b(2x) - b(x) = -\frac{1}{2}xa(2x).$$

Hence, we may take a(x) = x, and the second equation in (7.4) becomes

$$b(2x)-b(x)=-x^2$$
.

It is evident that a solution of the form $b(x) = Cx^2$ (C = const) should be attempted. We easily find C = -1/3.

Therefore the general solution f(x) of (7.1) is given by

$$xf(x) - \frac{1}{3}x^2 = \Pi(\log_2 x)$$

i.e.

$$f(x) = \frac{x}{3} + \frac{1}{x} \prod (\log_2 x)$$

where Π has the same meaning as above.

Remark. Two functional equations which generalise the equation (7.1), namely

$$mf(mx) = f(x) + \frac{m^2 - 1}{3}x$$
 $(m \in \mathbb{N})$
 $f(2x) = af(x) + p(x)$ $(a > 0)$

were also considered in [4]. Clearly, both are special cases of (6.1) and can be solved by the methods given in this paper.

REFERENCES

[1] J. D. Kečkić, On some classes of linear equations, Publ. Inst. Math. (Beograd) 24 (38) (1978), 89-97.

[2] L. Poinsot, Eléments de statique, Paris 1811, pp. 175-178.

[3] D. Pompeiu, Une équation fonctionnelle à propos du centre de gravité de l'aire d'un triangle, Bull. Math. Phys. Ecole. Polytechn. Bucarest 8 (1937). 3—5.

[4] D. Pompeiu, Sur l'équation fonctionelle de Poinsot et autres équations analogues, Bull. Math. Phys. Ecole. Polytechn. Bucarest 9 (1938), 54-56.

Tikveška 2 11000 Beograd