PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série, tome 26 (40), 1979, pp. 11—17

ON THE ESSENTIAL FLATS OF GEOMETRIC LATTICES
Dragan M. Acketa
(Communicated March 1, 1979)

Abstract. Crapo [1] has defined the essential flats, but here they are

~ defined in another way. It is proved that the complements of essential flats

are the essential flats of the dual matroid and that the essential flats them-
selves constitute a lattice.

Matroid M on a finite set (carrier) S is the ordered pair (S, f), where f

is the function which maps 25 to 25 and which satisfies the following axioms
for each X; YCS and for each a, 5&S:

M. - XCfx

) - XCY = fXCfY

A3) FX=fX

) bef(XUa\fX = aCf(XUb)

A subset X of the set S is a flat (shortly — F) of the matroid M iff
fX=X.

The flats of a matroid constitute a lattice (so-called geometric lattice)
ordered by inclusion, in which the infimum and the supremum are defined by:

) ' XAY=XNY
®) XVY=f(XUY)
We also use another definition of ma_troid:

Matroid M on a carrier S is the ordered pair (S, r), where r is the
function which maps 25 to the set of non-negative integers and satisfies the
following conditions for each X, YCS:

@) : 0<rX<|X|
t3) XCY = rX<rY
® rXUN)+r(XNY)<rX+rY

Besides, for each X'C S and for each y&S§ is satisfied:
(10) rX<r(XUy)<rX+1
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The connection between the functions r and f is given by:
an yefX & r(Xuy)=rx
The number rX is the rank of the set X. The bases of a matroid M are

the minimal subsets among those subsets ¥ of S which satisfy r Y =rS.

It is known [2] that the complements according to the carrier S of the
bases of a matroid M are the bases of another, dual, matroid M* with the
same carrier S.

All objects of the matroid M are denoted by adding (*) to the denotations
of the corresponding objects of M (e. g. r*, f*, F¥),

The connection. between the functions r and r* is given by:

12) r*S\X)=|S|-rS—| X|+rX
for each XCS.

A flat X of a matroid M with the carrier S is an essential flat (shortly
— EF) if it is satisfied
(13) r(X\y)=rX
for each y& X.

The null and the wunit of a matroid are the flats of rank O and rS
respectively. The null is always an EF, by (7) and (8).

On the complements of essential flats

In what follows we take that the set X is a subset of the carrier S of
a matroid M.

Theorem 1.

(14) X is F=> (X is EF & S\X is F%
We divide the proof into two parts: |

(15) @ X is EF »> S\X is F*

(16) ® (X is FAS\X is F¥) = X is EF

We first prove three lemmas:

Lemma 1.1
amn r(X\y)=rX & r(X\))#rX-1
for each X_S and ycS
Proof: If we replace the set X in (10) by X\y, then we obtain:
rX\»)=rXVr(X\p)=rX-1
because the rank is an integer-valued function.
Lemma 1.2.
s yEX = (rX\p)=rX-1 o yef*(S\X))
Jor each XCS and y€ES.
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Proof: Using (11) and (12) we find:
YESFES\X) & r*(S\@X\»)=r*(S\X) &
S [S[-rS—|X\y|+r(X\»)=|S|-rS~|X|+rX &
& | X|-(X|-D=rX-r(X\3) & r(X\p)=rXx-1
Lemma 1.3. ,
19 YEX = (r(X\¥)=rX & y&f*(S\X))
SJor each XCS and ycS.

Proof: The direct consequence of (17) and (18).
The proof of the assertion @:
Using (13), (12) and (11) we obtain:

X is EF > r(X\p)=rX > (VyeS8) € X > r(X\»)=rX) =
= (YYES) 0EX = yZf*(S\x)) = (VYES) WES*(S\X) = yZX) >
= fAE\DCS\X = f*S\X)=S\X = S\X is F*

" Note. All the implications, except the first one, could be reversed.
The proof of the assertion @:

Let us assume that the assertion is wrong. Then there exists a subset
XCS, which satisfies

X is FAS\X is F*A\7(X is EF)
We use that-
S\X is F* o f*(S\X)=S\X

Then we have (by (13), (17) and (18)):
X is FAN(X is EF) > X is FAU(X is FA(VY) (r(X\))=
=rX)) > X is FAQI(X is F)VI(VY) ¢ (X\»=rX)) =
= X is FAA@DIeE\p)=rX) > X is FAQ@y) ¢(X\p)=rXx-1) =
2> @NeX\W=rX-1) > 3y GEXArEX\P)=rX-1) >
= @) PEXAYES*(S\X)) = (@) GEXAYES\X) = Iy E o)

A contradiction.
This completes the proof of the Theorem 1.

The consequences of the Theorem 1.

(20) ()] XCS > (X is EF & S\X is EF¥)
Proof: We first prove
21) (XCSAX is EF) > S\X is EF*

By the use of (15) and the definition of EF we have
22) (XCSAX is EF) > (X is FAS\X is F¥)
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Noticing that (F*)*=F (because (M*)*=M) and that S\(S\X)=X
we prove (
(23) (S\X is F*AX is F) > S\X is EF*
similarly as (16).
The assertion (21) follows from (22) and (23).
In a very similar (dual) way we prove
24) (XCSAS\X is EF*) > X is EF
The assertion (20) follows from (21) and (24).

((2)) The set of matroids whose geometric lattices have the empty set and the
carrier as the only essential flats, is- selfdual.

((3)) The connection (12) enables us to determine the ranks of all essential
flats of the dual matroid. According to [l], the essential flats together with
their ranks uniquely determine the geometric lattice (and the matroid). This
implies that the Theorem 1. gives an algorithm for construction of the geometric
lattice of the dual matroid. : :

On the lattice of essential flats of a geometric lattice

Theorem 2. Essential flats of a geometric lattice constitute a lattice
ordered by inclusion.

Lema 2.1. A
(25) (X is EFAY is EF) = f(XUY) is EF
Before proving this lemma we introduce ‘a special designation and prove
five lemmas concerning it;
def '
(26) q(Y,X):|Yj—|Xi—rY+rX
for each two subsets X and Y of the carrier.

Lemma 2.2. ’
(X)) ’ YOX = q(Y, X)=0

Proof: Adding some elements of the set Y\X to the set X, the rank
of the set X is increased by rY—rX, Due to Y_OX and (10) we have

[Y|-|X|=\"\X|Z>rY-rX
which proves the lemma.
Lemma 2.3.
(28) q(Z, X)=q(Z, Y)+4q(¥, X)
Proof The direct consequence of (26).
Lemma 2.4.
29 q(XUY, X)+q(XUY, )=q9, XNY)+q(¥, XNY)
Proof The required non equality follows from the next two non-
-equalities:
) g(XUY, X)+q(XUY, V)=q(XUY, XNY)
2) ¢(X, XNY)+q (¥, ¥XNY)<q(XUY, XNY)
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The proofs of these are. easﬂy deduced from (9) and (26).

Lemma 2.5

B30) - g(XUY, X)=0 = ¢(¥, XNY)=0
Due to (28) we have
31) 1@XUY, )+ (X, XNY) =g (XUY, ) +q(¥, XNY)

We first put g (X UY X)=0 in (29) and (31) and, after that, replace
g(XUY, Y) in (31), using (29). So we obtain

q(X, XmY)>q(X XNY)+2q(¥, XNY)
Hence by (27) follows (30).
The sense of the designation ¢ (X, Y) is explained by the followmg lemma:
Lemma 2.6.
B2 Z is EF(:>Z is FANVX)(XCZAX#ZANX is F) = q(Z, X)#0)

Proof: ((«)) Let the right side hold and ¥ be a flat which satisfiesk
YCZ and rY=rZ-1. Then, according to (27), it also holds ¢(Z, ¥)>0,.
that is
(33) _ |Z]-[YI>1

If x&Z, then there exists a flat Y which satisfies

L YCZ\xA\NrY=rZ -1

- (Furthermore, using (10) and (11) we can prove that each chain of a
geometric lattice between the null and an arbltrary flat Z contains exactly one
flat of each rank between 0 and rZ.)

According to (10) (or (17)) we have
rZ>r(Z\x)>rZ— 1=rY

By (33) the set (Z\x)\Y is non-empty. By (8) and (11) this 1mphes that
r(Z\x)>rY, that is r(Z\x)=rZ. This means that Z is EF.

(=) Let Z be an EF. Then by (13)
(Y is FAYCZArY=rZ-1) = |Z|-|Y|>1,

that is, ¢(Z, ¥)>0.
If holds ,
W is FAWCZArW<rZ-1,

then in an arbitrary chain of the geometric lattice between the flats W and Z
there exists a flat 7' of rank rZ — 1. Due to (28) 9(Z, W)=q(Z, T)+q (T, W).
As q(Z, T)>0, and, by (27), ¢(T, W)=0, so is q(Z, W)>0.

The proof of Lemma 2.1.:

Let A and B be essential flats.

If ACB (similarly if BC4), then f(AUB)=f(B)=B, and so f(4AUB)
is EF.
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If none of the sets 4 and B is a subset of the other, then let us sup-
pose that f(AUB) is not an EF. Then by (32) we obtain

(G4 AX) XCFAUBANXAf(AUBAX is FAq(f(AUB), X)=0
We differentiate two cases and give a special proof for each:
I. ACX . ACX

I. We first prove that 4C X implies that B X. The remainder of the proof
is quite similar as in the second case.

Let us suppose that ACX and BCX.

Then we have AUBCXCf(4UB) and, by (8), also r(AUB)<rX<
<r(f(4U)B)). As from (11) follows '

r(f(AUB)=r(AUB), sois rX=r(f(4UB)).

However, the set f(4UB)\X is non-empty by (34) and so by (11) and
(8) we have that rX<r(f(4UB)). A contradiction. _
I. Using (34) and (1) we prove that XUACf(AUB) By (28) we have
q(f(AUB), X)=q(f(AUB), XUA)+q(XU4, X). As q(f(4UB), X)=0, so
by (27) is also g(X\U4, X)=0. Finally, (30) implies that g (4, 4ANX)=0. As
ANX is flat, ANXTA and ANX+#4, so by (32) the set A4 is not an EF.
A contradiction. :

‘ The proof of Theorem 2. By (25) we have that if 4 and B are
essential flats, then f(4{UB) is EF, too. As f(A!JB) is the smallest flat which
contains A4 and B, so it is certainly the smallest EF which contains 4 and B.
Thus the supremum of two subsets 4 and B in the (ordered by inclusion) set
of essential flats (of a geometric lattice)- is also defined by 4V B=f(4UB).
As the set of essential flats contains the null of the geometric lattice, which
‘is a subset of all essential flats, so the set of essential flats is a lattice, orde-
red by inclusion. ,

We denote the lattice of essential flats of a geometric lattice L by E;.

Some traits of the lattice £,

The intersection of two essential flats is not always an EF. For example,
if {a, b, ¢) and {a, d, e) are flats of rank 2, and <{a), (b), {c), {d), {e) are
flats of rank 1 of a geometric lattice, then <a, b, ¢) and {a, d, e) are essential
flats, but {(a) is not.

In what follows we take that S is the carrier of the matroid with the
geometric lattice L.

Theorem 3. The infimum of two essential flats A and B in the lattice Ey
- is defined by
ANB=S\f*(S\(4NB))

Proof: The sets S\4 and S\B are EF* by (20). Then by (25) the set
X=f*(S\(ANB)) is also EF*. Hence by (20) the set S\X is EF. As X is the
smallest EF* which contains S\A and S\B, so S\X is the largest EF which is
contained in 4 and B.



On the essential flats of geometric lattices 17

Theorem 4. The lattice E; has a unit.

Proof: The null Z of the lattice L* is the smallest EF*. So the set -
S\Z is the largest EF of the lattice L. :

Consequence: The unit (the carrier) of the lattice L is EF iff the
null of the lattice L* is the empty set.

We conclude that the lattice £, is not always a sublattice L. The supre-
mums and nullas are common for these lattices, but it is not always the case
concerning their -infimums and units. '

The lattices E;, and E,, are mutually inverted. Namely, the mapping
i:X— S\X, where XCE, is, by (20), a bijection of E, onto E,.. Further-
more, according to the proof of Theorem 3., it holds

_ HXAY)=i(X)V*i(Y),
and dually also holds .
IXVY)=i(X)A*i(Y)

Generally speaking, the lattice E; is “less regular“ than the lattice L,
because the lengths of different maximal chains of the lattice E;, between
some two essential flats, are not always equal.

Finally, we cite a theorem which is proved with the help of essential flats:

Theorem 5. There are n non-isomorphic matroids and n — 2 non-isomorphic
simple matroids of rank n—1 on an n-element carrier.

Proof: (Sketch) It is primarily proved that the geometric lattices of
matroids of rank n—1 on an n-element carrier have exactly one non-empty EF
and that the matroids are completely determined by the rank of that EF. The
value of that rank is between 0 and n— 1, therefore there exists n possibilities.
The geometric lattices of simple matroids have no non-empty flats of rank
0 and 1.
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