A FIXED POINT THEOREM IN MENGER SPACES

Olga Hadžić

(Received December 15 1978)

Abstract: In [1], [2], [3], [4], [10], [11] and [15] some fixed point theorems in probabilistic metric and random normed space (S, \mathcal{F}, t) are proved where $t = \min$. We shall prove in this paper a fixed point theorem in complete Menger spaces (S, \mathcal{F}, t) where t is a continuous T-norm such that the family $\{T_n(x)\}_{n\in\mathbb{N}}$ is equicontinuous at the point x=1, where;

$$T_n(x) = \underbrace{t(t(t(\cdot \cdot \cdot t(t(x, x), x), \ldots), x), x \in [0, 1], n \in \mathbb{N}.}_{n-\text{times}}$$

An example of such T-norm is given. A similar result for matric spaces is obtained in [8]. We shall also give, using the method from [3], a short proof of Theorem 1 from [4].

A probabilistic metric space (S, \mathcal{F}) i formed by a nonempty set S together with a mapping \mathcal{F} which assigns to each $(x, y) \subset S \times S$ a distribution function $F_{x,y}$ such that the following conditions are satisfied;

- (F1) $F_{x,y}(t) = 1$ for all t > 0 if and only if x = y.
- (F 2) For every $(x, y) \in S \times S : F_{x, y}(0) = 0$.
- (F3) For every $(x, y) \in S \times S : F_{x, y} = F_{y, x}$.
- (F4) If $F_{x,y}(r) = 1$ and $F_{y,z}(s) = 1$ then $F_{x,z}(r+s) = 1$.

By a Menger space (S, \mathcal{F}, t) we mean [13] a probabilistic metric space (S, \mathcal{F}) with (F4) replaced by the condition;

(F4)' For every $(x, y, z) \in S \times S \times S$ and every r, s > 0;

$$F_{x,z}(r+s) \geqslant t(F_{x,y}(r), F_{y,z}(s))$$

where t is a T norm [13].

The (ε, λ) -topology is introduced by the family $\{U_{\nu}(\varepsilon, \lambda)\}_{\substack{\varepsilon > 0 \ \varepsilon > 0}}^{\nu \in S}$ where $U_{\nu}(\varepsilon, \lambda) = \{u \mid F_{u, \nu}(\varepsilon) > 1 - \lambda\}$ and this topology is metrisable if $\sup_{x < 1} t(x, x) = 1$ [13].

Further we shall use the following Theorem ([9] p.p., 45): If t is a continuous T-norm and I = [0,1] then:

$$I \times I = (\bigcup_{k \in K} J_k x J_k) \cup C(\bigcup_{k \in K} J_k x J_k)$$

where the set K is at most denumerable, for every $k \in K$ is J_k an open interval, $J_k \cap J_r = \emptyset$ for $k \neq r$ and the restriction $t \mid J_k x J_k$ is an Archimedean semigroup i.e. t(x, x) < x for every $x \in J_k$.

A semigroup $t:[A, B] \times [A, B] \rightarrow [A, B]$ is strict if for every $x \in (A, B)$ the inequality $x_1 < x_2$ $(x_1, x_2 \in [A, B])$ implies that $t(x, x_1) < t(x, x_2)$.

In the next Theorem we shall denote $t \mid J_k x J_k$ by $t_k (k \in K)$.

Theorem Let (S, \mathcal{F}, t) be a complete Menger space with continuous T-norm t such that the family $\{T_n(x)\}_{n\in \mathbb{N}}$ is equicontinuous at the point x=1 and for every $k\in K$ the semigroup t_k is strict. Further, let the mapping $H:S\to S$ be such that for every $t_i>0$ (i=1,2,3,4,5) and every $t_i>0$:

$$F_{Hu, Hv}\left(\sum_{i=1}^{5} r_{i}\right) \geqslant t\left(t\left(t\left(F_{u, Hv} \frac{t_{5}}{a}\right), F_{v, Hu}\left(\frac{r_{4}}{b}\right)\right), F_{v, Hv}\left(\frac{r_{3}}{c}\right)\right),$$

$$F_{u, Hu}\left(\frac{r_{2}}{d}\right), F_{u, v}\left(\frac{r_{1}}{e}\right)\right)$$

where $a, b, c, d, e \in \mathbb{R}^+$ and a+b+c+d+e < 1. Then there exists a unique fixed point of the mapping H.

Proof; Let us prove that there exists a sequence $\{a_n\}_{n\in\mathbb{N}}\subset(0,1)$ such that $\lim_{n\to\infty}a_n=1$ and that the family $\{d_n\}_{n\in\mathbb{N}}$ of preudometrics defines the (ε, λ) -topology, where;

(1)
$$d_n(x, y) = \sup\{t \mid F_{x, y}(t) \leq a_n\} \quad (n \in \mathbb{N}; \ x, y \in S)$$

Suppose that, for every $k \in K$, $J_k = (c_k, b_k)$. If the set K is empty i.e. $t = \min$ we can take for $\{a_n\}_{n \in N}$ an arbitrary sequence from the interval (0, 1) such that $\lim_{n \to \infty} a_n = 1$ and from [3] it follows that for every $n \in N$ is d_n pseudometric.

Further, it is obvious that the family $\{d_n\}_{n\in\mathbb{N}}$ defines the (ε, λ) -topology. If the set K is finite say $K=\{1, 2, \ldots, m\}$ then $b_m<1$ or $b_m=1$. In the case that $b_m<1$ the restriction $t\mid [b_m, 1]\times [b_m, 1]=\min$ and we can take for $\{a_n\}_{n\in\mathbb{N}}$ an arbitrary sequence from the interval $(b_m, 1)$ such that $\lim a_n=1$. We shall

show that the relation $b_m = 1$ leads to a contradiction with the assuption that the family $\{T_n(x)\}_{n \in \mathbb{N}}$ is equicontinuous at the point x = 1. Namely, if $b_m = 1$ then the restriction $t \mid [c_m, b_m] \times [c_m, b_m]$ is an Archimedean semigroup such that for every $x \in J_m = (c_m, 1)$: $\lim_{n \to \infty} T_n(x) = c_m$ which fact was proved by Cho-

-Hsin Ling ([9]). So if $\lambda \in (0, 1)$ is such that $1 - \lambda > c_m$ then there is no $\eta(\lambda) \in (0, 1)$ such that;

 $x > \eta(\lambda) \Rightarrow T_n(x) > 1 - \lambda$

which is a contradiction. Suppose now that the set K is infinite. If there exists $b \in (0, 1)$ such that $b_m \le b$ for every $m \in K$ then we can take, as before, for $\{a_n\}_{n \in \mathbb{N}} \subset (0, 1)$ an arbitrary sequence such that $a_n > b$, for every $n \in \mathbb{N}$,

and $\lim_{n\to\infty} a_n = 1$. In the case that there is no $b\in(0, 1)$ such that $b_m \le b$ for every $m\in K$ then there exists a subsequence $\{c_{m(n)}\}_{n\in N}$ such that $\lim_{n\to\infty} c_{m(n)} = 1$.

Then by definition $a_n = c_{m(n)}$ for every $n \in N$. In [7] is proved that the family $\{d_n\}_{n \in N}$ from (1) is also a family of pseudometrics which defines the (ε, λ) -topology, using the method from [3] and the facts that $t(a_n, a_n) = a_n$, for every $n \in N$, and that for every $k \in K$ the semigrup t_k is strict. Now, we shall prove that for every $n \in N$ and every $u, v \in S$ the following relation holds;

$$d_n(Hu, Hv) \leq e \cdot d_n(u, v) + d \cdot d_n(u, Hu) + c \cdot d_n(v, Hv) + b \cdot d_n(v, Hu) + a \cdot d_n(u, Hv)$$

Suppose, on the contrary, that there exist $n \in \mathbb{N}$ and $u, v \in S$ such that;

$$d_n(Hu, Hv) > e \cdot d_n(u, v) + d \cdot d_n(u, Hu) + c \cdot d_n(v, Hv) + b \cdot d_n(v, Hu) + a \cdot d_n(u, Hv).$$

Then there exist r_1 , r_2 , r_3 , r_4 , $r_5 \in \mathbb{R}^+$ such that;

$$e \cdot d_n(u, v) < r_1; \quad d \cdot d_n(u, Hu) < r_2; \quad c \cdot d_n(v, Hv) < r_3; \quad b \cdot d_n(v, Hu < r_4;$$

 $a \cdot d_n(u, Hv) < r_5$ and $d_n(Hu, Hv) > \sum_{i=1}^{5} r_i$. Using the definition of pseudometrics d_n from this it follows that;

(2)
$$F_{u,v}\left(\frac{r_1}{e}\right) > a_n: \quad F_{u,Hu}\left(\frac{r_2}{d}\right) > a_n: \quad F_{v,Hv}\left(\frac{r_3}{c}\right) > a_n:$$

(3)
$$F_{\nu, Hu}\left(\frac{r_4}{b}\right) > a_n: \quad F_{u, H\nu}\left(\frac{r_5}{a}\right) > a_n: \quad F_{Hu, H\nu}\left(\sum_{i=1}^5 r_i\right) \leqslant a_n.$$

Let us prove that from (2) and (3) it follows that;

$$a_n < t \left(t \left(t \left(t \left(F_{u, Hv} \left(\frac{r_5}{a} \right), F_{v, Hu} \left(\frac{r_4}{b} \right) \right), F_{v, Hv} \left(\frac{r_3}{c} \right) \right), F_{u, Hu} \left(\frac{r_2}{d} \right) \right), F_{u, v} \left(\frac{r_1}{e} \right).$$

First, we shall show that for every $x \in (a_n, 1): T_s(x) > a_n$ for every $s \in N$ by induction. Suppose that s=1. If $t=\min$ or there exists $b \in (0, 1)$ such that $t \mid [b, 1] = \min$, using the definition of the sequence $\{a_n\}_{n \in N}$ we conclude that t(x, x) = x and so $T_1(x) = t(x, x) = x > a_n$. If there is no $b \in (0, 1)$ such that $t \mid [b, 1] = \min$ then $t(a_n, a_n) = a_n = c_{m(n)}$ and choose $\bar{\alpha}$, $\bar{\alpha}$ from the interval $J_{m(n)} = (c_{m(n)}, b_{m(n)})$ such that $a_n < \bar{\alpha} < \bar{\alpha} < \bar{\alpha}$. Since $t_{m(n)}$ is strict semigroup it follows that:

$$a_n = t(a_n, a_n) \leqslant t(\bar{\alpha}, \bar{\alpha}) < t(\bar{\alpha}, \bar{\alpha}) \le t(x, x)$$

and so $T_1(x) > a_n$ is all cases. Suppose now that $T_s(x) > a_n$ for some $s \in N$ and prove that $T_{s+1}(x) > a_n$. Since we proved that $y > a_n$ implies that $t(y, y) > a_n$ it follows that:

$$(4) a_n < t(T_s(x), T_s(x))$$

Further T-norm min is the strongest T-norm and so for every $m \in N$ we have that $T_m(x) \leq \min \{x, x, \ldots, x\} = x$. Using (4) we conclude that;

$$a_n < t(T_s(x), T_s(x)) < t(T_s(x), x) = T_{s+1}(x)$$

Because from (2) and (3) it follows that;

$$a_n < \min \left\{ F_{u, v} \left(\frac{r_1}{e} \right), F_{u, Hu} \left(\frac{r_2}{d} \right), F_{v, Hv} \left(\frac{r_3}{c} \right), F_{u, Hu} \left(\frac{r_4}{b} \right), F_{u, Hv} \left(\frac{r_5}{a} \right) \right\}$$

and so:

$$a_n < T_4 \left(\min \left\{ F_{u, v} \left(\frac{r_1}{e} \right), F_{u, Hu} \left(\frac{r_2}{d} \right), F_{v, Hv} \left(\frac{r_3}{c} \right), F_{v, Hu} \left(\frac{r_4}{b} \right), F_{u, Hv} \left(\frac{r_5}{a} \right) \right) \right),$$

From this it follows that;

$$a_{n} < t \left(t \left(t \left(f \left(f \left(r_{u, Hv} \left(\frac{r_{5}}{a} \right), F_{v, Hu} \left(\frac{r_{4}}{b} \right) \right), F_{v, Hv} \left(\frac{r_{3}}{c} \right) \right), F_{u, Hu} \left(\frac{r_{2}}{d} \right) \right),$$

$$F_{u, v} \left(\frac{r_{1}}{e} \right)) \leqslant F_{Hu, Hv} \left(\sum_{i=1}^{5} r_{i} \right) \leqslant a_{n}$$

which is a contradiction.

Now we have:

$$\begin{aligned} d_n(Hu, Hv) &\leqslant ed_n(u, v) + d \cdot d_n(u, Hu) + c \cdot d_n(v, Hv) + b \cdot d_n(v, Hu) \\ &+ a \cdot d_n(u, Hv) \leqslant (e + d + c + b + a) \max \{ d_n(u, v) \ d_n(u, Hu), \ d_n(v, Hv), \ d_n(v, Hu), \ d_n(v, Hv) \} \end{aligned}$$

and using the same method as Lj. Ćirić in [5] it follows that there exists one and only one fixed point x^* of the mapping H and $\lim_{n\to\infty} H^n x_0 = x^*$ which completes the proof.

Corollary [15] Let (S, \mathcal{F}, \min) be a complete Menger space and $H: S \to S$ be such that for every r > 0 and every $u, v \in S$:

$$F_{Hu, Hv}(q \cdot r) \geqslant F_{u, v}(r)$$
 where $q \in (0, 1)$

Then there exists one and only one fixed point x^* of the mapping H and $\lim_{n\to\infty} H^n x_0 = x^*$ for every $x_0 \in S$.

Proof; If a, b, c, d>0 are such that a+b+c+d+q<1 then from:

$$F_{Hu, Hv}(r_{1}+r_{2}+r_{3}+r_{4}+r) \geqslant F_{Hu, Hv}(r) \geqslant F_{u, v}\left(\frac{r}{q}\right) =$$

$$= t\left(t\left(t\left(t\left(t\left(1, 1\right), 1\right), 1\right), F_{u, v}\left(\frac{r}{q}\right) \geqslant t\left(t\left(t\left(t\left(F_{u, Hv}\left(\frac{r_{4}}{a}\right), F_{v, Hu}\left(\frac{r_{3}}{b}\right)\right), F_{u, Hu}\left(\frac{r_{3}}{d}\right)\right), F_{u, Hu}\left(\frac{r_{2}}{d}\right)\right), F_{u, Hu}\left(\frac{r_{3}}{d}\right)\right), F_{u, v}\left(\frac{r}{q}\right)\right)$$

we conlucude that all the conditions of Theorem are satisfied and so there exists one and only one fixed point x^* of the mapping H and $\lim_{n \to \infty} H^n x_0 = x^*$, where $x_0 \in S$ is an arbitrary element of S. Now, we shall give an example of

T-norm t such that the family $\{T_n(x)\}_{n\in\mathbb{N}}$ is equicontinuous at the point x=1and that t_k is strict for every $k \in K$.

Let $t(x, y) = x \cdot y$ for every $x, y \in [0, 1]$ and let us define T-norm t in the following way;

that
$$t_k$$
 is strict for every $k \in K$.
Let $\overline{t}(x, y) = x \cdot y$ for every $x, y \in [0, 1]$ and let us define T -norm following way;
$$t(x, y) = \begin{cases} 1 - 2^{-m} + 2^{-m-1} \overline{t} (2^{m+1} (x-1+2^{-m}), 2^{m+1} (y-1+2^m)) & \text{if } (x, y) \in J_m \times_x J^m \\ \min\{x, y\} & \text{if } (x, y) \notin \bigcup_{m=0}^{\infty} J_m \times_x J^m \end{cases}$$

where $J_m = [1 - 2^{-m}, 1 - 2^{-m-1}]$ for m = 0, 1, 2, ... It is easy to see that the family $\{T_n(x)\}_{n\in\mathbb{N}}$ is equicontinuous at the point x=1 since $\lim_{n\to\infty} 1-2^{-m}=1$.

In [4] Lj. Ćirić proved the following fixed point theorem; Let (S, F, min) be a complete Menger space, $T: S \to S$ and $q \in (0, 1)$ such that for every $u, v \in S$;

(5)
$$F_{Tu, Tv}(qx) \geqslant \min \{F_{u, v}(x), F_{u, Tu}(x) F_{v, Tv}(x), F_{u, Tv}(2x), F_{v, Tu}(2x)\}$$

for every x>0. Then there exists one and only one fixed point x^* of the mapping T and $x^* = \lim_{n \to \infty} T^n x_0$ for every $x_0 \in S$.

Using the method from [3] we shall give a short proof of this theorem.

Proof: Let $a \in (0, 1)$ and $d_a: S \times S \rightarrow R^+ \cup \{0\}$ be defined in the following way; $d_a(x, y) | F_{x, y}(t) \le 1 - a$. In [3] is proved that d_a is pseudometric and that the family $\{d_a\}_{a \in (0, 1)}$ defines the (ε, λ) -topology. We shall show that for every $a \in (0, 1)$ we have that;

$$d_a(Tu, Tv) \le q \max \left\{ d_a(u, v), d_a(u, Tu), d_a(v, Tv), \frac{1}{2} d_a(u, Tv), \frac{1}{2} d_a(v, Tu) \right\}$$

for every $u, v \in S$. Suppose on the contrary that there exist $a \in (0, 1)$ and $u, v \in S$ such that;

$$d_a(Tu, Tv) > q \max \left\{ d_a(u, v), d_a(u, Tu), d_a(v, Tv), \frac{1}{2} d_a(u, Tv), \frac{1}{2} d_a(v, Tu) \right\}$$

Then there exists r > 0 such that;

$$d_a(Tu, Tv) > r > q \max \left\{ d_a(u, v), \ d_a(u, Tu), \ d_a(v, Tv), \frac{1}{2} d_a(u, Tv), \frac{1}{2} d_a(v, Tu) \right\}.$$

Using the definition d_a from this it follows that;

$$F_{Tu, Tv}(r) \leq 1 - a$$
 and $\min \left\{ F_{u, v} \left(\frac{r}{q} \right), F_{u, Tu} \left(\frac{r}{q} \right), F_{v, Tv} \left(\frac{r}{q} \right), F_{v, Tv} \left(\frac{r}{q} \right) \right\}$

which is a contradiction. Similarly as in [5] it follows the above cited Ciric's fixed point theorem.

Remark; In Ciric's fixed point theorem [4] we can replace the inequality (5) by the following weaker condition; For every $u, v \in S$ it follows;

(6)
$$F_{Tu, Tv}(qx) \geqslant \min \{F_{u, v}(x), F_{u, Tu}(x) F_{v, Tv}(x), F_{u, Tv}(x), F_{v, Tu}(x)\}$$

The proof is similar as the above proof of Ćirić's result from [4] since from (6) it follows; $d_a(Tu, Tv) \le 2 \max \{d_a(u, v) d_a(u, Tu) d_a(u, Tv), d_a(v, Tv), d_a(v, Tu)\}$ and then we can apply Ćirić's result from [5] (after slight modification).

REFERENCES

- [1] Gh. Bocsan, On some fixed point theorems in random normed spaces, Seminarul de teoria functiilor si matematici aplicate, A. Spatii metrice probabiliste, Ne 13, 1974.
- [2] Gh. Bocsan, On some fixed point theorems in probabilistic metric spaces, Seminarul de teoria functiilor si matematici aplicate, A. Spatii metrice proabiliste, No 24, 1974.
- [3] G. L. Cain and R. H. Kasriel, Fixed and periodic points of local contraction mappings on probabilistic metric spaces, Math. Systems Theory, 9 (1976), 289—297.
- [4] Lj. Ćirić, On fixed points of generalized contractions on probabilistic metric spaces, Publ. Inst. Math. (Beograd), 18, (32), (1975), 71—78
- [5] Lj. Ćirić, A generalization of Banch contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267—273,
- [6] O. Hadžić, On the (ε, λ)-topology of probbilistic locally convex spaces, Glasnik matematički, Vol. 13 (33), 1978, 293—297.
- [7] O. Hadžić and M. Budinčević, A fixed point theorem on probabiliste metric spaces, Colloquia Mathematica Societatis János Bolyai, (to appear).
- [8] G. E. Hardy and T. D. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull., $16 \ \text{N}_2$, (1973), 201-206.
- [9] V. Istratescu, Introducere in teoria spatiilor metrice probabiliste cu aplicatii, Editura Technica, Bucarest, 1974.
- [10] V. Istratescu and I. Sacuiu, Fixed point theorems for contraction mapings on probabilistic metric spaces, Rev. Roumaine Math. Pures Appl., 18 (1973), 1375—1380.
- [11] I. Istratescu and E. Roventa, On fixed point theorems for mappings on probabilistic locally convex spaces, Seminarul de teoria functiilor si matematici aplicate, A. Spatii metrice probabiliste, No. 19, 1974.
 - [12] B. K. Ray, On Ciric's fixed point theorem, Fund. Math., XCIV. 3, (1977).
- [13] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334.
- [14] B. Schweizer and A. Sklar, Associative functions and abstrast semigroups, Publicationes Matematices, Debrecen, 10 (1963), 69-81.
- [15] V. M. Sehgal and A. T. Bharcha Reid, Fixed points of contraction mappings on probabilistic metric spaces, Math. System Theory, 6 (1972), 97—102.

Olga Hadžić Faculty of Sciences Department of Mathematics 21000 NOVI SAD Dr Ilije Đuričića 4 Yugoslavia