FIXED POINTS OF ANTIMORPHISMS

R. Dacić

(Received June 9, 1979)

Introduction

O. Let P be a non-void set and $f: P \rightarrow P$. The mapping f has a fixed point if there exists an element a in P such that f(a) = a. If P is a partially ordered set and $f: P \rightarrow P$ has the poperty

(1)
$$a, b \in P \text{ and } a \leqslant b \text{ imply } f(a) \leqslant (b),$$

then f is said to be isotone (or increasing).

If f satisfies the condition

(2)
$$a, b \in P \text{ and } a \leqslant b \text{ imply } f(a) \geqslant f(b),$$

then f is said to be *antitone* (or decreasing). Since Tarski's famous theorem [6], that every isotone mapping of a complete lattice into itself has a fixed point, many papers appeared concerning fixed points of mappings in partially ordered sets. Among them some papers deal antitone mappings (see [1] to [5]). In this note we treat two kinds of mappings (defined by (3) and (4) bellow) of a complete lattice into itself and obtain results which generelize results of [5].

Let L be a complete lattice. The mapping $f:L \to L$ satisfying the condition

(3)
$$f(\inf M) = \sup f(M) \text{ for any } \emptyset \neq M \subset L$$

where $f(M) = \{f(x) | x \in M\}$ and inf M (resp. $\sup M$) is another notation for $\bigwedge \{x | x \in M\}$ (resp. $\bigvee \{x | x \in M\}$) is called a *meet antimorphism*.

Similarly, if f satisfies the condition

(4)
$$f(\sup M) = \inf f(M)$$
, for $\emptyset \neq M \subset L$,

then such an f is said to be a join antimorphism.

It is easily seen that if f, defined in a complete lattice L and satisfying (3) and (4), (we call such mappings *antimorphisms*), then it must also satisfy (2).

Let us note that we shall write $a \wedge b$ (resp. $a \vee b$) and not inf $\{a, b\}$ (resp. $\sup \{a, b\}$).

In this paper we examine fixed points of such antitone mappings $f:L \to L$ which are comparable to the identity mapping $i:L \to L$, in the sense that for any $x \in L$ is $f(x) \leq x$ or $f(x) \geqslant x$. It appears that such mappings are antimophisms. More precisely, the following proposition is valid.

Proposition O. Let L be a complete lattice and $f:L \to L$ an antitone mapping satisfying the condition: $(\forall x \in L) (f^2(x) \leq x)$. Then f is a meet antimorphism.

Remark. $f^2 = f \circ f$.

Proof. Let $\emptyset \neq A \subset L$ and $m = \inf A$. Then $f(m) \geqslant f(x)$ for every $x \in A$, i.e. f(m) is an upper bound for f(A). Let $s = \sup f(A)$. Evidently

$$s \leqslant f(m)$$
.

From $f(x) \le s$, it follows $f^2(x) \ge f(s)$, or (since $x \ge f^2(x)$) $x \ge f(s)$. We conclude that f(s) a lower bound for A. Then $f(s) \le m$, which implies $f^2(s) \ge f(m)$, or

$$s\geqslant f(m)$$

Our conclusion follows from (α) and (β) , that is $f(\inf A) = \sup f(A)$. Analogous statement for join antimorphism is also valid.

1. Fixed points of meet antimorphisms

Theorem 1. Let L be a complete lattice satisfying the following condition:

(a) There exists an antichain $A \subset L$ such that every $x \in L$ is either a join or a meet of elements of A.

Let $f:L \to L$ be an antitone mapping such that

- (i) For every $x \in L$ is $f^2(x) \leq x$;
- (ii) for every $x \in A$ is f(x) comparable to x;
- (iii) $\{x \in A \mid x \geqslant f(x)\} \neq \emptyset$.

Then there exists a fixed point of f.

Proof. Denote be $P_f(L)$ the family of all subsets B of L satisfying $f(\inf B) \leq \inf B$. By (iii) $P_f(L)$ is nonempty.

Lemma. Under the assumption of the theorem $P_f(L)$, ordered by inclusion, has a maximal element.

Proof of the lemma. Let $\{B_i | i \in I\}$ be a chain in $(P_f(L), \subseteq)$ and put inf $B_i = b_i$, $B_0 = \bigcup \{B_i | i \in I\}$. We shall show that $B_0 \in P_f(L)$. Let $i, j \in I$. We may assume $B_i \leqslant B_j$ and so $b_i \geqslant b_j \geqslant f(b_j) \geqslant f(b_i)$. It follows that $\inf \{b_j | j \in I\} \geqslant f(b_i)$ for each $i \in I$, and so $\inf \{b_j | j \in I\} \geqslant \sup \{f(b_i) | i \in I\}$. Since f is, by proposition O, a meet antimorphism, we obtain

$$\inf\{b \mid b \in B_0\} = \inf\{b_i \mid i \in I\} \geqslant \sup\{f(b_j) \mid j \in I\} = f(\inf\{b_i \mid j \in I\}) = f(\inf B_0), \text{ proving that } B_0 \in P_f(L).$$

The assertion of the lemma follows now from Zorn's lemma.

Proof of the theorem. Put

$$A_f = \{a \in A \mid a \geqslant f(a)\}$$

$$A^f = \{a \in A \mid a < f(a)\}.$$

By the lemma, there exists $B_0 \in P_f(L)$ such that $f(b_0) \leqslant b_0$, where $b_0 = \inf B_0$. If $f(b_0) = b_0$ we are done. Suppose $f(b_0) < b_0$. Then, since L satisfies the condition (α), there exists $a \in A$, a non-comparable to b_0 , such that

$$(1) f(b_0) \leqslant b_0 \wedge a.$$

We distinguish two cases.

Case 1° $a \in A_f$. Then $f(b_0) \le a$ implies $f(a) \le f^2(b_0) \le b_0$. From this and $f(a) \le a$ (since $a \in A_f$) we obtain

$$f(a) \leqslant b_0 \wedge a.$$

The relations (1) and (2) imply

$$f(b_0) \vee f(a) \leqslant b_0 \wedge a$$
.

But $f(b_0) \lor f(a) = f(b_0 \land a)$, hence $f(b_0 \land a) \le b_0 \land a$, contradicting maximality of B_0 .

Case 2°. $a \in A^f$. Then (1) yields

$$f^2(b_0) \geqslant f(b_0) \vee f(a)$$

or, by (i)

$$b_0 \geqslant f(b_0) \lor f(a) \geqslant f(a) > a$$

contradicting the hypothesis that b_0 and a are incomparable.

The hypothesis $f(b_0) < b_0$ must be rejected, and (since $f(b_0) \le b_0$) $f(b_0) = b_0$ follows.

Remark 1. The following will show that neither of the conditions of theorem 1 may be individually dropped.

Example 1. Let L be the lattice on the figure 1 and $f: L \to L$ defined by

$$f = \begin{pmatrix} 0 & a & b & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

The conditions (ii) and (iii) are fulfilled, but not (i). No fixed point of f exists.

Figure 1

Example 2. The same lattice as in example 1 with

$$f = \begin{pmatrix} 0 & a & b & 1 \\ a & 0 & a & 0 \end{pmatrix}.$$

The conditions (i) and (iii) are fulfilled, but not (ii). There is no fixed point of f.

Example 3. The same lattice as in example 1 with f defined by

$$f = \begin{pmatrix} 0 & a & b & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$
.

The conditions (i) and (ii) are fulfilled but not (iii). No fixed points of f exists.

Remark 2. If the complete lattice L is coatomic, i.e. if every $x \in L$, $x \neq 1$, is a meet of coatoms — elements of L covered by 1, then, if by C is denoted the set of coatoms, $C_f = \varnothing$ implies f(x) = 1 for every $x \in L$, so that the condition (iii) can be omitted. In this case we have the following

Corollary 2. Let L be a complete coatomic lattice and $f:L \to L$ an antitone mapping such that

- (i) $f^2(x) \leqslant x$ for every $x \in L$:
- (ii) f(a) is comparable to a for every $a \in C$.

Then f has a fihed point.

2. Fixed points of join antimorphisms

Let L be a complete lattice and $f:L \to L$ an antitone mapping. Then the following theorem is valid.

Theorem 3. Let L be a complete lattice satisfying the condition (α) of theorem 1 and let $f:L \to L$ be an antitone mapping such that:

- (i) for every $x \in L$ is $f^2(x) \geqslant x$;
- (ii) for every $a \in A$ is f(a) comparable to a;
- (iii) $\{a \in A \mid a \le f(a)\} \neq \emptyset$.

Then f has a fixed point.

The proof of this theorem is similar to the proof of theorem 1 and will be omitted.

Examples similar to the examples following theorem 1 can show that neither of the conditions of theorem 3 may be individually dropped.

Remark 3. If the complete lattice L is atomic, i.e. if every $x \in L$, $x \neq 0$, is a join of atoms-elements of L that cover O, then (if by A is denoted the set of atoms) $A^f = \emptyset$ implies f(x) = 0 for every $x \in L$, so that the condition (iii) can be dropped. In this case we have the following

Corollary 4. Let L be a complete atomic lattice and let $f:L \to L$ be a an antitone mapping such that:

- (i) for every $x \in L$ is $f^2(x) \geqslant x$;
- (ii) f(a) is comparable to a for every $a \in A$;

Then f has a fixed point.

Corollary 5. ([5], Theorem 1) Let L be a complete atomic lattice and let $f:L \to L$ be an antitone mapping satisfying the condition (i) of corollary 4. If $f(a) \geqslant a$ for each atom a, then f has a fixed point.

3. Commuting mappings

Theorem 6. Let L be a complete lattice satisfying the condition (a) of theorem 1 and let $f, g: L \to L$ be two antitone mappings such that:

- (i) for every $x \in L$ is $f^2(x) \leq x$, $g^2(x) \leq x$;
- (ii) for every $a \in A$ is f(a) comparable to a, g(a) is comparable to a;
- (iii) $A_f = A_o \neq \emptyset$;
- (iv) fg = gf.

Then f and g have a common fixed point.

Proof. If we put $(f \lor g)(x) = f(x) \lor g(x)$, then $(f \lor g)^2(x) = (f \lor g)(f(x) \lor g(x)) = f(f(x) \lor g(x)) \lor g(f(x) \lor g(x)) \leqslant f^2(x) \lor g^2(x) \leqslant x$, so that $f \lor g$ fulfills the condition (iii) of theorem 1. Evidently $f \lor g$ is a meet antimorphism.

Since $f \lor g$ fulfills all the conditions of theorem 1, there exists a point b_0 such that $(f \lor g)(b_0) = b_0$. We know that $b_0 \leqslant a$ for some $a \in A$.

From $f(b) \leqslant b_0$, $g(b_0) \leqslant b_0$ we obtain $(fg)(b_0) \geqslant g(b_0)$, $(gf)(b_0) \geqslant f(b_0)$, so that

(1)
$$(fg)(b_0) \geqslant f(b_0) \lor g(b_0) = b_0.$$

The condition (i) implies

(2)
$$f^2(g(b_0)) = g(b_0), g^2(f(b_0)) = f(b_0).$$

From (1) it follows $f^2(g(b_0)) \leqslant f(b_0)$ and $g^2(f(b_0) \leqslant g(b_0))$. This and (2) imply $f(b_0) \leqslant g(b_0) \leqslant f(b_0)$, or $f(b_0) = g(b_0) = (f \lor g)(b_0) = b_0$, proving the theorem.

Corollary 7. Let L be a complete coatomic lattice with the set C of coatoms an let $f, g: L \rightarrow L$ be two antitone mappings satisfying conditions (i) — (iv) of the theorem 6. Then f and g have a common fixed point.

Theorem 8. Let L be a complete lattice satisfying the condition (α) of theorem 1 and let $f, g: L \to L$ be two antione mappings such that:

- (i) for every $x \in L$ is $f^2(x) \geqslant x$, $g^2(x) \geqslant x$;
- (ii) for every $a \in A$ is f(a) comparable to a, and g(a) is comparable to a;
- (iii) $A^f = A^g \neq \emptyset$;
- (iv) fg = gf.

Then f and g have a common fixed point.

Proof of this theorem is analogous to the proof of theorem 6 and will be omitted.

Corollary 9. Let L be a complete atomic lattice (with the set A of atoms) and let $f, g: L \to L$ be two antitone mappings satisfying the conditions (i) — (iv) of the theorem 8. Then f and g have a common fixed point.

Corollary 10. ([5], theorem 2) Let L be a comlete atomic lattice and let $f, g: L \to L$ be antitone mappings which satisfy the condition (i) of the theorem 8 and $f(a) \geqslant a$, $g(a) \geqslant a$ for each atom a. If fg = gf, then f and g possess a common fixed point.

REFERENCES

- [1] A. Abian, A fixed point theorem for nonincreasing mappings, Boll. Un. Mat. Ital. 2 (1969), 200-201.
- [2] A. Abian, A fixed point theorem for image-intersecting mappings, Proc. Amer. Math. Soc. 73 (1979), 300-302
- [3] D. Kurepa, Fixpoints of decreasing mappings of ordered sets, Publ. Inst. Math. (Beograd), Nouv. série, 18 (32) (1975), 111—116.
- [4] F. T. Metcalf an T. H. Payne, On the existence of fixed points in a totally ordered set, Proc. Amer. Math. Soc. 31 (1972), 441—444.
- [5] Z. Shmuely, Fixed points of antitone mappings, Amer. Math. Soc. 52 (1975), 503-505.
- [6] A. Tarski, A lattice-theoretical fixpoint theorem and its application, Pacific J. Math. 5 (1955), 285-309.