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In the first part of this paper we study some general questions concerning
fixed points of antitone self-mappings of a partially ordered set. In the second
part is assumed that the underlying set is conditionally complete (dense or
not) and the mappings are still antitone.

0. Imtroductory concepts and notation

Let P be any nonvoid set and f:P—P. We donote by I(f, P) the set
of all fixed points of f, i.e.
I(f, P)={x|xEP and f(x)=x}.
If < is an order relation on P, ie. if (P, <) is an ordered set, we use
the following notation, borrowed from Kurepa (see [3]):
PF={x|xcP and x<f(x)}
Pi={x|xEP and x=>f(x)}

Evidently, I(f, P)=P/N\P;.

Instead of fof we shall write f2. More generally, we use f* for fof*1,
where n is a positive integer and f° the identity mapping.

Let P be a partially ordered set (poset) and f:P-—P.

A function f will be called isofone if a, b&P and a<<b imply

) F@<f®)
and antitone if a<(bh implies
@ f(@=1 )

In complete lattices L are considered functions f such that, for any
@ FACL

(&) f(VA)=Nf(4), where f(h)={f(a)]|ac4}.

6*



84 R. Dacié

A function f in a complete lattice L satisfying (3) is referred to as join
antimorphism.
One considers also meet antimorphism, satisfying

“4) SIND)=Vf4), @#4CL.

It is easily seen that every funotion f, defined on a complete lattice L,
satisfying (3) and (4) also satisfies (2), that is, join and meet antimorphisms
are antitone mappings.

On the other hand, it is easy to construct an antitone mapping on a
complete lattice which is neither a join antimorphism nor a meet antimorphism
(see Example 1).

d Example 0.1. Let P be the lattice on the fi-
gure 1 and f:P—P defined by:

fda b, ch={d}, fd)=a.

b ¢ Evidently, f is antitone, but
f(sup {a’ ba C}) =f(d) =a¥
Figuz; . nf{f (@), f(b), f(¢)}=inf{d}=d.

Mapping f is not a join antimorphism.
If we define g:P—P, g({b, ¢, d})={a} and g(a)=d, then g is antitone,
but not a meet antimorphism.

One can construct an antitone mapping of a complete lattice L into it-
self, which is neither a join antimorphism nor a meet antimorphism.

1. Some general properties of antitone mappings -

The famous Tarski’s theorem (see [S]) asserts that any isotone mapping
of a complete lattice L into itself has a non-void set 7 of fixed points and
this set is a complete sublattice of L relative to the same partial order.

Unlike of isotone, an antitone mapping of a complete lattice into itself
can be without any fixed point. But if the set of fixed points of an antitone
mapping is non-void and contains more than one point, then this set is never
a sublattice of L. Moreover it is true the following

Proposition 1.1. Let (P, <) be a partially ordered set, f: P—~P anti-
tone and I1(f, P)+# @. Then (I(f, P), <) is an antichain of (P, <).

If I(f, P) is a singleton then there is nothing to prove. Suppose there
are at least two different fixed point of f, x and y say, and x<<y. Applying f
we obtain f(x)=f(y), or, since both points are fixed under f, x>y, which
contradicts the supposition x<y.

In connection with the proposition 1.1 natural questions arise:

Question 1.1, Given a partially ordered set P and an antichain ACP.

Under which conditions there exists an antitone mapping f:P—P such that
the only fixed point of f are just the elements of A?
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In the cace when P is a chain the answer is affirmative.

Question 1.2. In cases in which the answer to the question 1.1 is
affirmative, does there exist an antitone mapping which is 1:1?

For a chain, the answer to the question 1.2 is affirmative only if the
point a, where 4 ={a} is the given antichain, is some ,,center of the chain.

Factorisation. Definition. Let f, f,, f,:P—P. The mapping f is said to be
Jactorable if f=fiof,. If P is a poset and f;, f, antitone self-mappings of P,
then, as can be easily ceen, f,of, is an antitione self-mapping of P.

Let f be an arbitrary isotone self-mapping of a poset P. If there exist
- two antitone self-mappings of P, f; and f, say, such that f=f,of,, then we
say that f is 2-factorable.

In the case f,=f,, then f is said to be I-factorable. :

Not every isotone self-mapping of a poset P can be 1-factorable as shows
the following example. .

b Y
Example L1. If P=

a
Figure 2

and f is the identity mapping, then f cannot be 1-factorable.

Every constant mapping f:P—P is 1-factorable as f=fof. Such a mapping
is said to be self-factorable. ,

What about fixed points of f, f; and f, provided that f=f,of,7

If f, and f, have a common fixed point, then evidently the common
- fixed point of f; and f, is also a fixed point of £. But the existence of a
~fixed point of f does not imply the existence of a common fixed point of

f, and f2

Theorem 1.1. Let P be a poset, f: P—P, f=f of,=f,of, and |I1(f, P)|=1.
Then f, and f, have the unique common fixed point.

Proof. Let acI(f,P). Then f,(@)=f, > (/; of) @=/o(f;°f) @~-

- =(ioh)ef, @=(fof) @=f(fi(a), ie. fi@CI(f;P). But I(f,P) is a

singleton, hence f, (@)= a.
Similarly f, (@) =a.
Suppose now f, and f, have another common fixed point, & say. Then
b=f, (b) implies f,(b)=/f(b)=b, contradicting the hypothesis [I i, P)[-1

Corollary 1.1. Let P be any poset, f:P—>P an antitone mapping and
| I(f2 P)|=1. Then f has a unique fixed point.
The corollary 1 has the following generalisatlon, due to D. Adamovié¢
(see Matematicki vesnik 8(23), 1971, problem 236.).

‘ Proposition 1.2. Let P be any non-void set and f:P—P such a ma-
pping that for some natural n f* has a unique fixed point. Then the mapping f
has a unique fixed point as well,
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Proof. Let s=s"(s). Then f(s)=f(f"(s)) =f"(f(s)). Hence f(s)&I(f", P).
This and s&I(f" P) and |I(f", P)|=1 imply f(s)=s. The unicity of the
fixed point of f is obvious.

2. Antitone self-mappings of conditionally complete posets

In this section we assume that (P, <) is a conditionally complete poset.
A poset P is said to be conditionally complete if every non-empty subset of P
which is bounded has a supremum and an infimum in P. A poset P is dense
if, for any x, y&P, x<y implies the existence of z&P such that x<z<y.

Proposition 2.1. If P is an arbitrary non-void poset and f:P—P an
antitone mapping, then
: Plt g o Pt o.
Proposition 2.2. With hypothesis on P and f like in proposition 1, the
Sfollowing two conditions are equivalent:
(1) Every point of Pf is comparable to every point of Py,
(il) P/<P; (i.e. for every x&P/ and every yC P, is x<y.)

Proposition 2.3. Let P be a conditionally complete poset, f: P—~P an-
titone. If, furthermore, Pf<{P, (both set being nonempty), then sup Pf (denote
it by s) and inf P, (denote it by i) both exist, and $<i.

If moreover P is dense, then s=i.

Remark 2.1. The converce of the proposition 3 is not true, ie. if P.

is a conditionally complete, poset f:P—P antitone, i=infP;,, s=sup P/ exist,
then the condition Pf< P, need not be valid. This shows the following.

Example 2.1.
a c
e f:P—P is defined by:
F= b F@=f®)=f©=d,
fd)y=f=fh=c.
d h \
" Figure 3

If is easily verified that f is antitone, Pi={a, b, c}, Pf ={d, e, h}, sup Pf= e;
infP,=b, but b is not comparable to e.

Proposition 2.4. If P is non empty poset, f:P—P antitone and Pf<P;,

fPRCP, f(PHCP,.

Proposition 1—4 are either parts of theorems or parts of proofs of
theorems in paper [3], and their proof will be omitted.

then
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Proposition 2.5. Let P be a conditionally complete poset, f:P—P an-
titone and, for @ #ACP, sup A (inf 4) exists. Then inff(A4) (supf(A)) also exists
(where f(A4) is the set {f(x)|xEAD.

Proof. Let a=supA4 (b=infA). Then for every x&€4 we have x<a
(b<x). Since f is antitone, it follows f(x)=f(a) (f(b)=f(x)). Hence, the set
S={f(x)|xE A} is bounded from below (above) and inff(4) (supf(4)) exists, by
conditionally completeness of P.

The notions of join antimorphism and meet antimorphism can be defined
in every conditionally complete poset, as follows.

A mapping f:P—P is a join (meet) antimorphism if for every @ #A4CP
bounded from above (from below), f(4) is bounded from below (from above)
and the relation (3) (resp. (4)) of the section O is valid. ,

: Proposition 2.6. Let (P, <) be a conditionally complete nonempty poset,
© f:P—P a join antimorphism, P/<P; (both sets being nonempty) and scP;.
Then s=i.

Remark 2.2. In the sequel we use the notation s=supP”, i%ianf.

. Proof One see easily that f is antitone. Hence propositions 1—3 are
valid. According to proposition 3, s<{i. But s&P, and, since I =inf Py, s>i.

Proposition 2.7. Let (P, <) be a conditionally complete nonempty po-
set, f:P->P a meet antzmor_phzsm, PSP, (both sets being nonempty) and i< P/,
Then s=1i. '

Proof is analogous to the proof of the proposition 2.6.

‘Remark 2.3. The proposition 2.6 and 2.7. are valid for an arbitrary
antitone mapping but we need them such, as they are stated.

Theorem. 2.1. Let P be conditionally complete non-empty poset, f:P—>P
a join antimorphism and a meet antimorphism, Pf<P, and s=i. Then f(s)=s.

P roof. Sincefis a join ant;morphlsm and s=1, we have f (S)=f(sup P\)=
=1inff(PF)=(by proposition 4 and 3) i=s .

But f is also a meet antimorphism, hence

S (&) =f(i)=f(nfP,)=sup f(PF)=(by proposition 4 and 3)<s.

The following simple example shows that the condition s=1i in the theo-
rem 2.1 cannot be removed.

b
Example 2.2,

f@=b, fB)=a. Figuro 4
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The mapping f so defined is both a join antimorphism and a meet anti-
morphism, P/<P;, but s<i and no fixed point of f exists. In Abian’s theo-
rem [1] this s1tuat10n is removed by hypothesis that P is dense.

Theorem 2.2. Under the hypothesis of the proposition 2.6, f(s)=s.

Proof. By propositionk2.6. s=1i. The rest of the proof runs like the
first part of the proof of theorem 2.1.

Theorem 2.3. Under the hypothesis of proposition 2.7. is f(s)=s.

Proof applies the proposition 2.7. and runs like the second part of the
proof of the theorem 2.1.

Remark 2.4. The theorem 2.2. is essentially reformulated Kurepa’s
theorem 2 (sée [3]). The following example shows that the condition sEPf ]
cannot be removed even in the case of a finite lattice.

Example 2.3. Let

f({d7 g, e h})“—"{a}’ f(x)=b,
f®)=c, f@=d

Figure 5

All conditions of the theorem 2.2. are fulfilled excepting s&P;, but no
fixed point of f exists.

The following two theorems make more precise the theorem 2:16 of [3].

Theorem 2.4. Let (P, <) be a conditionally complete nonempty poset,
f:P—P a join antimorphism such that there exist nonempty sets X and Y such
that XCPf, YCP;, f(X)CY, f(Y)CX,

supX=inf¥Y=z
and z& Py, Then f(2)=z.

Theorem 2.5. All is same as in the theorem 2.4. with a meet anti-
morphism instead of a join antimorphism and z & Pf instead of z& Py

Proofs of these two theorems run like the proof of the theorem 2.1.
and will be omitted.
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Remark 2.5. Evidently, the theorem 2.2, (resp. 2.3.) is a special case
of the theorem 2.4. (resp. 2.5.). For X=Pf, Y=P, we obtain theorems 2.2,
and 2.3.

Theorem 2.6. Let (P, <) be a non-empty conditionally complete poset,
f:P—>P a mapping which is simultanously a join antimorphism and a meet anti-
morphism, and there exist non-empty sets X and Y such that XCPf, YCP;,
fX)CY, f(Y)CX and sup X=inf Y=z, Then f(z)=z.

Proof of this theorem is similar to the proof of the theorem 2.1. and
will be omitted.

Theorem 2.7. Let (P, <)‘ be a conditionally complete nonvoid poset,
f:P—>P an antitone mapping such that

@) P/<P;,
(i) s&€P;, icP.
Then 1° s=i;

2° f(s)=s.

Proof. The condition (ii) means f(s)=s and f(i)=i This, the condi-
tion (i) and the proposition 2.2. imply
*) ' f(=s=i=f(i).

Since f is antitone and s=17, we have f(i))<{f(s). This and (¥) imply
FO=f@)=s=i.

In papers [1] and [4] the underlying poset is assumed to be:

(i) totally ordered,

(i) dense (for any a, b&P, a<<b implies that there exists ¢&P such that

a<c<b),

(iii) conditionally complete.

A poset P satisfying the conditions (i) to (iii) is said to be continuous.

In [4] the following theorem is proved.

Theorem MP. Suppose f.P—>P satisfies

D S, FGICS(x, y]) whenever x, ycP, x<y and f())<[(x),
(2) f is nonoscillatory either from the right or from the left,

(3) Ja, bEP such that a<b, a<f(a), f(b)<b.

Then f has a fixed point in the interval [a, b].

A function f:P—P is said to be nonoscillatory from the right if, for
each x&P,

M f([x, 4]) has at most one point.
u>x, uchP

Likewise, f is said to be nonoscillatory from the left if, for each x&P,

(O f([4, x]) has at most one point.

u<x, ucP
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We shall show that the condition (1) is sufficient to ensure the existence
of a fixed point, if the poset satisfies the continuity condition and f is an
antitone mapping. In other words we shall prove the following .

Theorem 2.8. Let P be a continuous poset and f:.P—>P an antitone ma-
pping satisfying the condition

(1) x,yEP and x<y = [f(3), FOICS([x, yD.
Then f has the unique fixed point.

Proof. By proposition 1—4 we know that s=sup P/ and i=infP; both
exist, s=1i, and f(P)CP;, f(PPCP.

Since every xCP is either in P, or in P/, we have f(i)>i or f(i)<i, or
S =i

Suppose f(f)>i.

Let xC (i, f()]. Then x&P;, hence f(X)EP/, ie. f(x)<i In particular
o<

Hence, f((G, f(ODCL/? (@), i] and f([i, FODC{ OV, il

On the other hand, by the condition (1)

[£2 (@), fOICS T FODCL (), (VLA G}
[£2@), UL FOICL2 @), ULF O
i, fOI={i}, ie. f()=1.

Similarly the hypothesis f(i)<i is disproved.
Now we give a short proof of a recent result of A. Abian.

or

which implies

Theorem A. (Abian, [4]). Let P be a nonempty simply ordered poset,
which is conditionally complete, and f:P—P an antitone mapping.

If, for every x&P, x£f(x) implies
(°) F(H)NH+#~ @, where H=(x,f(x)] or H=[f(x), x), then f has a
fixed point.

Proof. Put s=sup P/. Suppose s<f(s). Then (s, f(s)]CP;, hence,
according to the proposition 4, f((s, f(s)])CP\ P, which contradicts (1°).

Similarly is disproved the supposition s>>f(s). Since P is simply ordered
it must be s=£(s).
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