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Introduction., The algorythmic solvability of problems in group theory has
attracted much attention ({1] — [8],, [12] — [16]). For a number of properties
of the elements of a given group, as well as for properties of a group as a
* whole, it is already proved to be algorythmicaly @i-e. recursively) unrecogmzable
In this paper we expound some further results in this direction.

- The groups are supposed to be finitely presentable (fp.), i.e. to have a
presentation Il= (x s X Ry=1,..., R, =1) where x;y..., x, arc gene-
rators and R, =1,. kml the defmmg relations. The group Gn "defined by
.this prese‘ntation is Gn__ W/ IR ...y R, F, being a free group of rank n,
and [R,,..., R] the minimal normal subgroup of F, containing the words
“Riyee.s Ry '
The properties are supposed to be algebraic, ie. preserved under
isomorphisms. ‘ :

The problems we are dealing with are of the following type: given an
algebraic property P of f.p. groups, prove or disprove the existence of an
algorythm to decide for any given finite presentation Il whether P (Gm)
holds or not. .

Statements and proofs. Let // denote a class of all universal fip. groups,
ie. groups which contain as a subgroup an isomorphic copy of every fip.
group (the existence of such groups was proved by G. Higman [9)). ./ (P)
denotes that a nottrivial algebraic property P of fip. groups is a Markov
property, i.e. that there exists a group F which cannot be embedded into a
group G such that P(G) is true.

In what follows we shall make use of the following results.

. Theorem (Rabin [15], Adjan [1]); Bvery Markov property of fp.
groups is not recursively recogmzabie
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Theorem (BoZovi¢ [5]): 4 nontrivial algebraic property P of fip.
groups is a Markov property if and only if none of the universal f.p. groups
enjoys P, i.e.

AP = VUEY1PW).

Hence, one should search for possibly recognizable ones only among
those properties that contain both some (but not all) of the universal groups,
and some of the non-universal ones. Even some properties of this kind are
already known to be unrecognizable: some of the strong Markov properties [8],
being a Hopf group [7], the properties incompatible with free product [11] etc.
As for the remaining properties, it is still open which of them are recognizable
and which are not; by the results given here we resolve this problem for
some of them.

Let £ (G) denote a maxunal number of nontrivial factors in free decom-
position of the group G, i.e. e

@)=k & (BGI""LGk)G%Gl*‘ %G A
(VmEN)((E‘Hl,,Hm)GgHI* . '*Hm = m<k)

In what follows we are dealing with algebraic properties P of the form P=QUR,
where Q contains only some- (but not all) of the unlversal groups, and R
contains only some of the non-universal ones.

Result 1: Let P= QUR be an algebrazc property of f-p. groups: If there
exists a positive integer k such that

() (Y GER) f(@)k A\ min f(©)>1, or |
i) (¥ GEQ) F(G)#k,

then P is a recurszvely unrecognzzable property.

Proof: Let II be a presentation of an f.p. group with unsolvable word
problem and let /:(II, r) > II(r) be a recursive function which assigns to the
ordered pair consisting of a presentation Il and a word r, r& I, another .
presentation IT (r), satisfying

r=1 > Gn(,)gl
II

" br#1 = Gp<Gne (M. Rabin, [15]).
H .

Let us consider first the case (i) when R fulfills the required condition, i.e.
when a positive integer k (k>1) exists such that R does not contain a group
having k as the maximal number of factors in its free decomposition. For the.
sake of simplicity we choose the smallest such k. :
Let N be a (non-universal) ‘group enjoying R i.e. P, and let f(N)=k— 1.

For I1 we choose a presentation of a torsion-free group (i.e. one that has no-
element of finite order) with unsolvable word problem..(W. Boone [4] .proved
that, for every recursively enumerable degree d, there exists a torsion-free f.p.
group with word problem of degree d.) Let r be a word on the generators
of I, and II(r) a presentatxon described above. -
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Now, let us consider the following group G,
o  G=N#(Gup *x Gup)-
Then, one has
[;I—r=1 > Gnm=l > G=N = P(G,).

If rs#1, then Gn<Gn¢y and G, is of the form (1). If G is a torsion-

I
-free group, the same applies to Gr¢y (W. Boone [4]), and hence Gr(y is not
a universal group (because a universal group contains an isomorphic copy of
every finite group, and hence contains elements of every finite order). As the
direct product of two torsion-free groups is a torsion-free group also, G ¢y ¥
‘xGu¢ey is not a universal group. So, G, is not a wuniversal group too
(N. BoZovi¢ [6]), and f(G,)=k (as Gm¢) X Gu ¢y cannot be decomposed into a
nontrivial free product, A. G. Kurosh [10]). So, G, does not enjoy P.
Consequently, G, enjoys P iff Gp¢y=1. :
In the case (ii), when it is Q which satisfies the above mentloned
condition, the proof goes analogously. Here, in the case k>1, the group G,
can be taken as : .

‘ G U * (GH ) X Gn (,))
where U is a umversal f.p. group enjoymg P and having k-1 as the max1ma1
number of free factors. A

If k=1, we choose . .
G,=Ux (Gue xGu)

where U has property P.
So, G, enjoys P iff Gp =1, too. L

Now one can proceed as usual: if P is an algorythmicaly recognizable
property. over the class of all finite presentations, then for every given r, r&II
(where I1 is chosen as above), one can construct effectively - the group G,
and check whether P (G,) is true or false. Thus one can decide for every s, r&I1,
whether l—r—l or not, contrary to the assumption that n has ‘unsolvable

word problem

Result 2: Let P QUR be an algebraic property of f p.. groups, and
let d be an arbitrary given degree of unsolvability. If R does not contain a group
with word problem of degree greater then or equal to d, then Pis a recursively
unrecognizable property. .

Proof: The proof is similar to the proof of Result 1. Here We choose
G = G * Gn )

where G, is the group such that P(G,) holds, and II is the presentation of
the torsmn free group Gp such that dg (Gn)>d. By Rabin’s construction [15],
Gn ) > G, so that

dg (Gu ()= dg (Gn).
Consequently, P(G,) iff Gn¢y2x1, etc.
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Discussion. It is known that many group properties are not algo-
rythmicaly recognizable, as mentioned in the Introduction. However, the exact
border line, dividing unrecognizable ones from the rest, is still unknown.

Using the Results 1 and 2 given above, we can restrict our search for
the algorythmicaly recognizable properties P to those for which it is true that:

(1) for every n& N, (n>1), P contains a group G with F(G) = n,

(2) for every recursively enumerable degree of unsolvability d, P contains
& group with the word problem of degree 4,

(3) both (1) and (2) are true for ] P also.
It is possible that some relevant group properties still fall within this class.
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