RESULTS ON NON-UNIQUE FIXED POINTS*

J. Achari

(Received May 16, 1978)

1. Introduction:

Recently Cirić [2] proved some fixed point theorems when the mapping T of a metric space (M, d) satisfies an inequality of the type

(1)
$$\min \{d(Tx, Ty), d(x, Tx), d(y, Ty)\} - \min \{d(x, Ty), d(y, Tx)\} \le \alpha d(x, y)$$

for $x, y \in M$ and $0 < \alpha < 1$. He also showed that the mapping should be orbitally continuous. In a recent paper we [1] have further extended this idea of Cirić.

The chief aim of the present paper is to introduce and to study the fixed points of a mapping T by using symmetrical rational expression and which satisfies the inequality

$$\frac{\min\{d(Tx,Ty)d(x,y),d(x,Tx)d(y,Ty)\} - \min\{d(x,Tx)d(x,Ty),d(y,Ty)d(y,Tx)\}\}}{\min\{d(x,Tx),d(y,Ty)\}} \leqslant \frac{\min\{d(Tx,Ty)d(x,y),d(x,Tx)d(y,Ty)\} - \min\{d(x,Tx),d(y,Ty)\}}{\min\{d(x,Tx),d(y,Ty)\}}$$

$$\leqslant \alpha \, d(x, y)$$

for $x, y \in M$, $0 < \alpha < 1$ and $d(x, Tx) \neq 0$, $d(y, Ty) \neq 0$.

Localized version of the main theorem and sequence of mappings which satisfy (2) are also discussed.

Before going into the theorems we state the following definitions.

Definition 1 (Ćirić [3]). A mapping T on a metric space M is orbitally continuous if $\lim_{i} T^{ni} x = u$ implies $\lim_{i} T T^{ni} x = Tu$ for each $x \in M$.

Definition 2 (Ćirić [3]). A space M is T-orbitally complete if every Cauchy sequence of the form $\{T^{ni}x\}_{i=1}^{\infty}$, $x \in M$ converges in M.

^{*} Research supported by C.S.I R.

2. Fixed point theorems.

Theorem 1. Let M be T-orbitally complete metric space and $T: M \to M$ be an orbitally continuous mapping on M. If T satisfies the following condition

$$\frac{\min \{d(Tx, Ty) \, d(x, y), \, d(x, Tx) \, d(y, Ty)\} - \min \{d(x, Tx) \, d(x, Ty), \, d(y, Ty) \, d(y, Tx)\}\}}{\min \{d(x, Tx), \, d(y, Ty)\}} \leqslant$$

$$\leqslant \alpha \, d(x, y)$$

for some $0 < \alpha < 1$, $x, y \in M$, $d(x, Tx) \neq 0$, $d(y, Ty) \neq 0$. Then for each $x \in M$, the sequence $\{T^n x\}_{n=1}^{\infty}$ converges to a fixed point of T.

Proof. We define a sequence of elements $\{x_n\}$ of M as follows: Let x_0 be any element of M. Let

$$x_1 = T x_0, \quad x_2 = Tx = Tx_1, \ldots x_n = Tx_{n-1}, \ldots$$

Now

 $\frac{\min\{d(Tx_0, Tx_1) \ d(x_0, x_1), d(x_0, Tx_0) \ d(x_1, Tx_1)\} - \min\{d(x_0, Tx_0) \ d(x_0, Tx_1) \ d(x_1, Tx_1) \ d(x_1, Tx_0)\}}{\min\{d(x_0, Tx_0), \ d(x_1, Tx_1)\}}$

$$\leq \alpha d(x_0, x_1)$$

i. e.
$$\frac{\min\{d(x_1, x_2) d(x_0, x_1), d(x_0, x_1) d(x_1, x_2)\}}{\min\{d(x_0, x_1), d(x_1, x_2)\}} \leqslant \alpha d(x_0, x_1)$$

i. e.
$$\frac{d(x_1, x_2) d(x_0, x_1)}{\min \{d(x_0, x_1), d(x_1, x_2)\}} \leqslant \alpha d(x_0, x_1)$$

Now if $d(x_1, x_0)$ is minimum, then we get

$$d(x_1, x_2) \leqslant \alpha d(x_0, x_1)$$

and if $d(x_1, x_2)$ is minimum then we have

$$d(x_0, x_1) \leqslant \alpha d(x_0, x_1)$$

which is a contradiction since $\alpha < 1$. So we get

$$d(x_1, x_2) \leqslant \alpha d(x_0, x_1)$$

Proceeding in this manner we obtain

$$d(x_n, x_{n+1}) \leqslant \alpha d(x_{n-1}, x_n) \leqslant \alpha^2 d(x_{n-2}, x_{n-1}) \leqslant \cdots \leqslant \alpha^n d(x_0, x_1)$$

Hence for any integer p one has

$$d(x_n, x_{n+p}) \leqslant \sum_{j=n}^{n+p-1} d(x_j, x_{j+1}) \leqslant \left(\sum_{j=n}^{n+p-1} \alpha^j\right) d(x_0, x_1) \leqslant \frac{\alpha^n}{1-\alpha} d(x_0, x_1)$$

Hence it follows that the sequence $\{x_n\}$ is Cauchy. M being T-orbitally complete, there is some $u \in M$ such that $u = \lim_{n \to \infty} T^n x$. By orbital continuity of T

$$Tu = \lim T T^n x = u$$

and hence u is a fixed point of T.

Theorem 2. Let

$$A = A(x_0, r) = \{x \in M \mid d(x_0, x) \leq r\}$$

where (M, d) is an orbitally complete metric space. Let T be an orbitally continuous mapping of A into M and satisfies

(3)
$$for_{x} x, y \in A \text{ and } r_{x} = x + c_{x} = x$$

$$d(x_0, Tx_0) \leqslant (1-\alpha)r$$

Then T has a fixed point.

Proof. By (4) we have

$$x_1 = Tx_0 \in A(x_0, r)$$

and by (2)

$$\frac{\min\{d(Tx_0, Tx_1) d(x_0, x_1), d(x_0, Tx_0) d(x_1, Tx_1)\} - \min\{d(x_0, Tx_0) d(x_0, Tx_1), d(x_1, Tx_1) d(x_1, Tx_0)\}}{\min\{d(x_0, Tx_0), d(x_1, Tx_0)\}}$$

$$\leq \alpha d(x_0, x_1)$$

Following lines of arguments of Theorem 1 we get

$$d(x_1, x_2) \leqslant \alpha d(x_0, x_1) \leqslant \alpha (1 - \alpha) r$$

Hence

$$d(x_0, x_2) \leq d(x_0, x_1) + d(x_1, x_2) \qquad [x_2 = Tx_1]$$

$$\leq (1 - \alpha) r + \alpha (1 - \alpha) r = (1 + \alpha) (1 - \alpha) r.$$

Suppose that

$$d(x_0, x_n) \leq (1 + \alpha + \cdots + \alpha^{n-1}) (1 - \alpha) r$$

and that

$$d(x_{n-1}, x_n) \leq \alpha^{n-1} (1-\alpha) r$$
 $[x_n = Tx_{n-1}]$

Then

$$\frac{\min\{d(x_n, Tx_n) d(x_{n-1}, x_n), d(x_n, x_{n-1}) d(x_n, Tx_n)\} - \min\{d(x_n, x_{n-1}) d(x_{n-1}, Tx_n), d(x_n, Tx_n) d(x_n, x_n)\}}{\min\{d(x_n, x_{n-1}), d(x_n, Tx_n)\}}$$

That is

$$d(x_n, Tx_n) \leqslant \alpha d(x_{n-1}, x_n) \leqslant \alpha^n (1-\alpha) r$$

Therefore

$$d(x_0, x_{n+1}) \leq d(x_0, x_n) + d(x_n, x_{n+1})$$

$$\leq (1 + \alpha + \dots + \alpha^{n-1}) (1 - \alpha) r + \alpha^n (1 - \alpha) r$$

$$\leq (1 + \alpha + \dots + \alpha^n) (1 - \alpha) r \leq r$$

Thus the sequence x_0 , $x_{n+1} = Tx_n$, $n \ge 0$ is contained in A. Also

$$d(x_n, x_m) \leqslant d(x_n, x_{n+1}) + \cdots + d(x_{m-1}, x_m)$$

$$\leqslant (\alpha^n + \cdots + \alpha^{m-1}) (1 - \alpha) r \leqslant \alpha^n r \to 0$$

as $n \to \infty$. Since A is orbitally complete, so $u = \lim_{n \to \infty} T^n x$ for some $u \in A$. By orbital continuity of T we have

$$Tu = \lim_{n} T T^{n} x = u$$

Thus u is a fixed point of T and hence the proof.

3. Sequence of mappings.

Theorem 3. Let (M, d) be a compact metric space. $\{T_n\}$ be a sequence of orbitally continuous functions of M into itself and satisfies

(5)
$$\frac{\min \{d(T_n x, T_{n+1} y) d(x, y), d(x, T_n x) d(y, T_{n+1} y)\} - \\ -\min \{d(x, T_n x) d(x, T_{n+1} y), d(y, T_{n+1} y) d(y, T_n x)\}}{\min \{d(x, T_n x), d(y, T_{n+1} y)\}} \leq \alpha d(x, y)$$

for some $0 < \alpha < 1$ and all $x, y \in M$, $d(x, T_n x) \neq 0$, $d(y, T_{n+1} y) \neq 0$ and each $n = 1, 2, \ldots$ If $\{T_n\}$ converges pointwise to the function T, then T has a fixed point. Indeed every cluster point of a sequence $\{x_n\}$ of fixed points x_n of T_n is a fixed point of T.

Proof. Let $x \in M$ be aribitrary and construct and construct the sequence

$$x_0 = x$$
, $x_1 = T_1 x_0$, $x_2 = T_2 x_1$, ... $x_n = T_n x_{n-1}$, ...

By (5) we have

$$\frac{\min \left\{ d\left(T_{n} x_{n-1}, \, T_{n+1} x_{n}\right) d\left(x_{n}, \, x_{n-1}\right), \, d\left(x_{n-1}, \, T_{n} x_{n-1}\right) d\left(x_{n}, \, T_{n+1} x_{n}\right) \right\} - \\ - \min \left\{ d\left(x_{n-1}, \, T_{n} x_{n-1}\right) d\left(x_{n-1}, \, T_{n+1} x_{n} d\left(x_{n}, \, T_{n+1} x_{n}\right) d\left(x_{n}, \, T_{n} x_{n-1}\right) \right\}}{\min \left\{ d\left(x_{n-1}, \, T_{n} x_{n-1}\right) \, d\left(x_{n}, \, T_{n+1} x_{n}\right) \right\}} \le$$

$$\leq \alpha d(x_{n-1}x_n)$$

which implies

$$d(x_{n+1}, x_n) \leqslant \alpha d(x_n, x_{n-1})$$

Proceeding in this way one gets

$$d(x_{n+1}, x_n) \leqslant \alpha d(x_n, x_{n-1}) \leqslant \cdots \leqslant \alpha^n d(x_0, x_1)$$

By routine calculation one can show that the following inequalities hold

$$d(x_i, x_j) \leqslant \sum_{k=1}^{j-1} d(x_k, x_{k+1}) \leqslant \frac{\alpha^i d(x_0, x_1)}{1 - \alpha} j > i$$

Thus the sequence $\{x_n\}$ is Cauchy. Since M is complete and $\{T_n\}$ are orbitally continuous, T_n has a fixed point for infinitely many of n's. So there is a subsequence $\{T_{n(k)}\}$ of $\{T_n\}$ such that each $T_{n(k)}$ has a fixed point, say x_k .

By compactness we may (by taking a subsequence) assume that $\{x_k\}$ converges to some x in M. We shall show that x is a fixed point of T. If $x_k \neq x$ for only finitely many of k's, then

$$T x = \lim_{k \to \infty} T_{n(k)} x$$

$$= \lim_{k \to \infty} T_{n(k)} x_k$$

$$= \lim_{k \to \infty} x_k$$

$$= x$$

So we may assume that $x_k \neq x$ for infinitely many of k's. This completes the proof of the theorem.

REFERENCES

[1] Achari, J., On Ciric's non-unique fixed points, Mat vesnik 13 (28), 1976, pp 255-257.

[2] Ćirić, Lj., On some maps with a non-unique fixed points, Publ. Inst. Math. T. 17 (31), 1974, pp 52-58.

[3] Ciric, Lj., On contraction type mappings, Math. Balkanica 1, 1971, pp 52-57.

Department of Mathematics Indian Institute of Technology Kharagpur — 2, India.