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Abstract In the present paper, we have derived two multiplication formulae
for Fox’s H-function using the fractional derivative operators D7 and D}'(’ « x
We have also obtained multiplication formulae for Meijer’s G-function and the
hypergeometric functions as particular cases of one of the formulae.

1. Introduction

The H-function introduced by Fox {2] is defined and represented in the
following manner [3]:
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where z#£0, m, n, p, q, are integers satisfying 1<m<q, 0<n<p, o (=
=1,2,...,p), B(U=1, 2,..., q) are positive numbers and a; (j=1, ..., p),
b;(j=1, 2,..., q) are complex numbers. The contour ¢ is a straight line
running from 6—ico to 6+ico in such a manner that the poles of I (b;— ;)
Jj=1,2,...m lie to the right and all the poles of I'(1 —g;+a;5) j=1,2,...,n
lie to the left of the contour. All the poles are assumed to be simple.

The conditions under which the integral (1.1) converges asymptotic ex-
pansion of the H-function and its particular cases can be referred to in a
paper by Gupta and Jain [3].
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2. In a recent paper Misra [4] has defined the fractional derivative ope-
rators in the following manner:
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« and K are not necessarily integers
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when K=a, (2.3) becomes
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The following two theorems given by Dube [2] are required to establish
our main results:

Theorem 1.
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Theorem 2.
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where the fractional operators occurring in (2.5) and (2 6) have been defined by
the equations (2.1) to (2.4).
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3. Main results

Here we derive the required multiplication formulae for the Fox’s H-func-
tion, first by using theorem 1 and then theorem 2. In Theorem 1, let us take

fx)=x"te HFF [x"‘?
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so that the right hand side of (2.5) becomes
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Now, with the help of (1.1) and (2.1), the above expression reduces to the
following value:
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Also, the left hand side of the theorem 1, becomes
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In the above expression, we use (1.1) and (2.3), we get the following value of it
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Hence, frecm (3.1) and (3.2) we get the follow.ng multiplication formula:
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Next, in Theorem 2, we put
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and proceed in a manner similar to (3.3), we get, after a little simplification,
the following multiplication formula for Fox’s H-function:
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4. Particular cases

If in the multiplicat.on formula (3.3) we put all o;=f;=1, we get,

the following multiplication formula involving Meijer’s G-function:
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(i) If we put all o;=p;=1, replace Q by Q+1, b, =0, and use a known
result [3, 600 (4.6)], we get, after a little simplification, the following resu’;
involving hypergeometric function:
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(iii) If in (4.2), we put P=Q=m=1, we get, after a little simplification,
the following interesting formula:

Folh+b—1, a; by u+b-1; xt]
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Particular cases for other simpler functions can also be obtained from
(3.3) on account of the most general nature of Fox’s H-function, but we do
not mention them here for want of space.

Also, particular cases for multiplication formula (3.4) can be obtained
in a manner similar to that of (3.3).
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