ON MULTIPLICATION FORMULAE FOR FOX'S H-FUNCTION

O. P. Garg

(Received June 1, 1977)

Abstract In the present paper, we have derived two multiplication formulae for Fox's H-function using the fractional derivative operators D_x^{α} and $D_{K,\alpha}^{n}$. We have also obtained multiplication formulae for Meijer's G-function and the hypergeometric functions as particular cases of one of the formulae.

1. Introduction

The H-function introduced by Fox [2] is defined and represented in the following manner [3]:

(1.1)
$$H_{p, q}^{m, n} \left[z \middle| (a_{j}, \alpha_{j})_{1, p} \right]$$

$$= \frac{1}{2\pi i} \int_{c} \frac{\prod_{j=1}^{m} \Gamma(b_{j} - \beta_{j} s) \prod_{j=1}^{n} \Gamma(1 - a_{j} + \alpha_{j} s)}{\prod_{j=m+1}^{q} \Gamma(1 - b_{j} + \beta_{j} s) \prod_{j=n+1}^{p} \Gamma(a_{j} - \alpha_{j} s)} z^{s} ds$$

where $z\neq 0$, m, n, p, q, are integers satisfying $1 \leq m \leq q$, $0 \leq n \leq p$, α_j $(j=1, 2, \ldots, p)$, β_j $(j=1, 2, \ldots, q)$ are positive numbers and a_j $(j=1, \ldots, p)$, b_j $(j=1, 2, \ldots, q)$ are complex numbers. The contour c is a straight line running from $\sigma - i\infty$ to $\sigma + i\infty$ in such a manner that the poles of $\Gamma(b_j - \beta_j s)$ $j=1, 2, \ldots m$ lie to the right and all the poles of $\Gamma(1-a_j+\alpha_j s)$ $j=1, 2, \ldots, n$ lie to the left of the contour. All the poles are assumed to be simple.

The conditions under which the integral (1.1) converges asymptotic expansion of the H-function and its particular cases can be referred to in a paper by Gupta and Jain [3].

2. In a recent paper Misra [4] has defined the fractional derivative operators in the following manner:

(2.1)
$$D_x^{\alpha}(x^{\mu-1}) = \frac{d^{\alpha}}{dx^{\alpha}} x^{\mu-1} = \frac{\Gamma(\mu)}{\Gamma(\mu-\alpha)} x^{\mu-\alpha-1}, \quad \alpha \neq \mu$$

(2.2)
$$D_{K,\alpha,x}(x^{\mu}) = \frac{\Gamma(\mu+1)}{\Gamma(\mu-\alpha+1)} x^{\mu+K}, \alpha \neq \mu+1$$

a and K are not necessarily integers

(2.3)
$$D_{K, \alpha, x}^{n}(x) = \prod_{r=0}^{n-1} \left[\frac{\Gamma(\mu + 1 + rK)}{\Gamma(\mu + 1 + rK - \alpha)} \right] x^{\mu + nK}$$

when $K = \alpha$, (2.3) becomes

(2.4)
$$D_{\alpha,\alpha,x}^{n}(x^{\mu}) = \frac{\Gamma\left[\mu + (n-1)\alpha + 1\right]}{\Gamma\left(\mu + 1 - \alpha\right)} x^{\mu + n\alpha}$$

The following two theorems given by Dube [2] are required to establish our main results:

Theorem 1.

$$D_{K, \lambda-\mu, t}^{m}[t^{\lambda-1}f(xt)] = \prod_{p=0}^{m-1} \left[\frac{\Gamma(\lambda+pK)}{\Gamma(\mu+pK)} \right] t^{\lambda-1+mK}.$$

$$\cdot \sum_{n=0}^{\infty} \frac{(-x)^{n}}{n!} {}_{m+1}F_{m}(-n, \lambda, \lambda+K, \dots, \lambda+\overline{m-1}K;$$

$$\mu, \mu+K, \dots, \mu+\overline{m-1}K; t) D_{x}^{n}[f(x)]$$
(2.5)

Theorem 2.

$$D_{K, \lambda-\mu, t}^{m}[t^{\lambda}f(xt)] = \prod_{p=0}^{m-1} \left[\frac{\Gamma(\lambda+pK)}{\Gamma(\lambda+pK)} \right] t^{\lambda-1+mK}.$$

$$\cdot \sum_{n=0}^{\infty} \frac{(-t)^{-n}}{n!} \prod_{p=0}^{m-1} \left\{ \frac{(1-\mu-pK)_n}{(1-\lambda-pK)_n} \right\}.$$

$$\cdot_{m+1}F_m(-n, \lambda-n, \lambda-n+K, \dots, \lambda-n+\overline{m-1}K;$$

$$(2.6) \qquad \mu-n, \mu-n+K, \dots, \mu-n+\overline{m-1}K; t) D_x^n[x^nf(x)]$$

where the fractional operators occurring in (2.5) and (2.6) have been defined by the equations (2.1) to (2.4).

³ Publications de l'Institut Ma hématique

3. Main results

Here we derive the required multiplication formulae for the Fox's H-function, first by using theorem 1 and then theorem 2. In Theorem 1, let us take

$$f(x) = x^{-bQ} H_{P, Q}^{M, N} \left[x^{\beta Q} \middle| (a_j, \alpha_j)_1, P \middle| (b_j, \beta_j)_1, Q \right]$$

so that the right hand side of (2.5) becomes

$$\prod_{p=0}^{m-1} \left[\frac{\Gamma(\lambda + pK)}{\Gamma(\mu + pK)} \right] \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} {}_{m+1} F_m(-n, \lambda, \lambda + K, \dots, \lambda + \overline{m-1} K; \mu, \mu + K, \dots, \mu + \overline{m-1} K; t) t^{\lambda-1+mK}.$$

$$\cdot D_x^n \left[x^{-bQ} H_{P, Q}^{M, N} \left[x^{\beta Q} \middle| (a_j, \alpha_j)_1, P) \middle| (b_j, \beta_j)_1, Q) \right] \right]$$

Now, with the help of (1.1) and (2.1), the above expression reduces to the following value:

$$\prod_{p=0}^{m-1} \left[\frac{\Gamma(\lambda + pK)}{\Gamma(\mu + pK)} \right] \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} {}_{m+1} F_m(-n, \lambda, \lambda + k, \dots, \lambda + \overline{m-1} K; \mu, \mu + K, \dots, \mu + \overline{m-1} K; t) t^{\lambda - 1 + mK} x^{-bQ}.$$
(3.1)
$$\cdot H_{P, Q}^{M, N} \left[x^{\beta Q} \middle| \begin{matrix} (a_j, \alpha_j)_1, P \\ b_j, \beta_j)_{1, Q-1}, (b_Q + n, \beta_Q) \end{matrix} \right]$$

Also, the left hand side of the theorem 1, becomes

$$D_{K, \lambda-\mu, t}^{m} \left[t^{\lambda-1} x^{-bQ} t^{-bQ} H_{P, Q}^{M, N} \left[(xt)^{\beta Q} \middle| (a_{j}, \alpha_{j})_{1}, P \middle| (b_{j}, \beta_{j})_{1}, Q \right] \right]$$

In the above expression, we use (1.1) and (2.3), we get the following value of it

(3.2)
$$x^{-bQ} t^{\lambda-bQ-1+mK} H_{P+m, Q+m}^{M, N+m} \left[(xt)^{\beta Q} \right]$$

$$(1-\lambda-pK+b_Q, \beta_Q)_{p=0, m-1}, (a_j, \alpha_j)_1, P$$

$$(b_j \beta_j)_{1, Q}, (1-\mu-pK+b_Q, \beta_Q)_{p=0, m-1}$$

Hence, from (3.1) and (3.2) we get the following multiplication formula:

$$H_{P+m, Q+m}^{M, N+m} \left[(xt)^{\beta Q} \middle| \frac{(1-\lambda-pK+b_{Q}, \beta_{Q})_{p=0, m-1}, (a_{j}, \alpha_{j})_{1} P}{(b_{j}, \beta_{j})_{1, Q}, (1-\mu-pK+b_{Q}, \beta_{Q})_{p=0, m-1}} \right]$$

$$= \prod_{p=0}^{m-1} \left[\frac{\Gamma(\lambda+pK)}{\Gamma(\mu+pK)} \right] t^{bQ} \sum_{n=0}^{\infty} \frac{(-t)^{n}}{n!} {}_{m+1} F_{m}(-n, \lambda, \lambda+K, \dots, \lambda+\overline{m-1} K; \mu, \mu+K, \dots, \mu+\overline{m-1} K; t) \cdot \left[x^{\beta Q} \middle| \frac{(a_{j}, \alpha_{j})_{1}, P}{(b_{j}, \beta_{j})_{1, Q-1}, (b_{Q}+n, b_{Q})} \right]$$

$$(3.3) \qquad \cdot H_{P, Q}^{M, N} \left[x^{\beta Q} \middle| \frac{(a_{j}, \alpha_{j})_{1}, P}{(b_{j}, \beta_{j})_{1, Q-1}, (b_{Q}+n, b_{Q})} \right]$$

Next, in Theorem 2, we put

$$f(x) = x^{-a_1} H_{P, Q}^{M, N} \left[x^{a_1} \middle| \begin{array}{c} (a_j, \alpha_j)_1, P \\ (b_j, \beta_j)_1, Q \end{array} \right],$$

and proceed in a manner similar to (3.3), we get, after a little simplification, the following multiplication formula for Fox's H-function:

$$H_{P+M, Q+m}^{M, N+m} \left[(xt)^{\alpha_{1}} \middle| \frac{(a_{1}-\lambda-pK, \alpha_{1})_{p=0, m-1}, (a_{j}, \alpha_{j})_{1}, P}{(b_{j}, \beta_{j})_{1, Q}, (a_{1}-\mu-pK, \alpha_{1})_{p=0, m-1}} \right]$$

$$= \prod_{p=0}^{m-1} \left[\frac{\Gamma(\lambda+pK)}{\Gamma(\mu+pK)} \right] t^{a_{1}-1} \sum_{n=0}^{\infty} \frac{(-t)^{-n}}{n!} \prod_{p=0}^{m-1} \left\{ \frac{(1-\mu-pK)_{n}}{(1-\lambda-pK)_{n}} \right\} \cdot \frac{(1-\mu-pK)_{n}}{(1-\mu-pK)_{n}} \cdot \frac{(1-\mu-pK)_{n}}{(1-\mu-pK)_{n}} \right\} \cdot \frac{(1-\mu-pK)_{n}}{(1-\mu-pK)_{n}} \cdot \frac{(1-\mu-pK)_{n}}{(1-\mu$$

4. Particular cases

If in the multiplication formula (3.3) we put all $\alpha_j = \beta_j = 1$, we get, the following multiplication formula involving Meijer's G-function:

(i)
$$G_{P+m, Q+m}^{M, N+m} \left[xt \middle| \frac{(1-\lambda-pK+b_{Q})_{p=0, m-1}, (a_{j})_{1}, P}{(b_{j})_{1, Q}, (1-\mu-pK+b_{Q})_{p=0, m-1}} \right]$$

$$= \prod_{p=0}^{m-1} \left[\frac{\Gamma(\lambda+pK)}{\Gamma(\mu+pK)} \right] t^{b_{Q}} \sum_{n=0}^{\infty} \frac{(-t)^{n}}{n!} {}_{m+1}F_{m}(-n, \lambda, \lambda+K),$$

$$\dots, \lambda+\overline{m-1} K; \ \mu, \ \mu+K, \dots, \ \mu+\overline{m-1} K; \ t).$$

$$(4.1) \qquad G_{P, Q}^{M, N} \left[x \middle| \frac{(a_{j})_{1}, P}{(b_{j})_{1, Q-1}, b_{Q+n}} \right]$$

(ii) If we put all $\alpha_j = \beta_j = 1$, replace Q by Q + 1, $b_1 = 0$, and use a known result [3, 600 (4.6)], we get, after a little simplification, the following resu's involving hypergeometric function:

$$P + m F_{Q+m} [(\lambda + pK + b_1 - 1)_{p=0, m-1}, (a_j)_1, P; (b_j)_{1,Q}, (\mu + pK + b_1 - 1)_{p=0, m-1}; xt]$$

$$= \prod_{p=0}^{m-1} \left[\frac{\Gamma(\lambda + pK)}{\Gamma(\mu + pK)} \frac{\Gamma(\mu + pK + b_1 - 1)}{\Gamma(\lambda + pK + b_1 - 1)} \right] t^{1-b_1}.$$

$$\cdot \sum_{n=0}^{\infty} \frac{(-t)^n}{n! \Gamma(b_1 - n)}_{m+1} F_m(-n, \lambda, \lambda + K, \dots, \lambda + \overline{m-1} K; \mu,$$

(4.2)
$$\mu + K, \ldots, \mu + \overline{m-1} K; t) _{p} F_{Q} [(a_{j})_{1, p}; (b_{1}-n, (b_{j})_{2, Q}; x]]$$

(iii) If in (4.2), we put P = Q = m = 1, we get, after a little simplification, the following interesting formula:

$${}_{2}F_{2}[\lambda+b-1, a; b, \mu+b-1; xt]$$

$$=\frac{\Gamma(\lambda)}{\Gamma(\mu)} \frac{\Gamma(\mu+b-1)}{\Gamma(\lambda+b-1)} t^{1-b} \sum_{n=0}^{\infty} \frac{(-t)^{n}}{n! \Gamma(b-n)} \times {}_{2}F_{1}(-n, \lambda; \mu; t) {}_{1}F_{1}(a, b-n; x)$$
(4.3)

Particular cases for other simpler functions can also be obtained from (3.3) on account of the most general nature of Fox's H-function, but we do not mention them here for want of space.

Also, particular cases for multiplication formula (3.4) can be obtained in a manner similar to that of (3.3).

Acknowledgement

The author is highly grateful to Dr. K. C. Gupta for his able guidance and kind help in the preparation of the present paper.

REFERENCES

[1] Dube, A. P. Certain multiplication formulae for Kampé de Fériet functions, Indian J. Pure and Appl. Maths., 5, 682—689 (1975).

[2]. Fox, C. The G and H-functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98, 408 (1961).

[3] Gupta K. C. and Jain, U. C. The H-function — II, Proc. Nat. Acad. Sci., India, 36, 594—609 (1966).
[4] Misra, A. P. On a fractional differential operator, Ganita, 26, 1—18 (1975).

Department of Mathematics. M. R. Engineering College, Jaipur (INDIA).