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Abstract: In the paper two necessary and sufficient conditions for partially
directed multigraph to be Eulerian are presented.

In this paper we consider only finite partially directed graphs that can
have loops and multiple lines.

Graph G is ordered triple (V, E, A), where ¥, E and A are finite pairwise
disjoint sets. V¥ is the set of vertices. E is the set of undirected lines, called
edges. To each edge eCE we associate an unordered pair [u, v] of vertices,
u, v&V, that are called endpoints of e. If u=v then e is undirected loop. 4 is
the set of directed lines, called arcs. To each arc ac A there is associated an
ordered pair (u, v) of vertices. u is fail and v is head of a. If u=v then a is
directed loop.

Graph G=(V, E, A) is directed if E= @. It is undirected if A= @. Let
G be any graph. Graphs E(G)=(V, E, 2) and 4A(G)=(V, @, A) are unoriented
and oriented part of G respectively.

If we substitute in a graph G an arc a whose pair is (¥, v) by new edge
e(a) with corresponding pair [u, v] we say that e(a) is desorientation of a. The
reverse operation that is in general not unique is called orientation a(e) of edge
e. G is an orientation (desorientation) of graph H if it is obtained by successive
orientations (desorientations) of edges (arcs) of H. An orientation (desorientation)
is complete if the resulting graph is directed (undirected).

Path g in a graph G is any sequence of vertices v,, ..., v, and lines
Pgs> + s Ppy Of the form:
E=VoPo V1" Va1 Pu-1Vn

where all lines p, are mutually distinct and if p; is directed line (=arc) then
v, is tail and v,,, is its head and if p, is undirected line (=edge) then v, and
vy, are its endpoints.
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On partially directed Eulerian multigraphs 17

We say that path g has length n and that is leading from v, to v,. If
Vo=V, then g is a cycle. Note that any edge p in a path g can be oriented in
unique way so that g remains a path. We say that p is oriented in accordance
with g. Any orientation of edges of a path g in accordance with g is called an
orientation of path g. If g has no edges it is an oriented path if it has no arcs
it is umoriented path.

Two paths g and 2 with no lines in common are said to be disjoint. The
set of pairwise disjoint cycles of graph G that covers all lines of G is called
cycle decomposition of G. A cycle decomposition is minimal if there is no cycle
decomposition with fewer cycles. Graph G is Eulerian if there is a cycle
(called Eulerian) that covers all vertices and lines of G.

Let u and v be any vertices in G. They are strongly connected if there
is a path leading from # to v and path from v to u. They are said to be one
way connected if there exists a path that is leading from u to v or from v to
u. They are weakly connected if they are (strongly) connected in a graph H
that is complete desorientation of G. It is clear that vertices that are strongly
connected are also one way connected and if they are one way connected then
they are also weakly connected. So we say that u and v are not connected if
they are not even weakly connected. G itself is strongly (one way, weakly)
connected if any pair of vertices of G is strongly (one way, weakly) connected.
G is disconnected if it is not even weakly connected. In undirected graphs all
three types of connectivity coincide. In that what follows we will use the term
connected as weakly connected. The following well known theorem allows us to
study cycle decompositions of graphs instead of Eulerian graphs.

Theorem 1: G is Eulerian if and only if it is connected and has a cycle
decomposition.

Let # and v be any two vertices in G. By a(u, v) we denote the number
(multiplicity) of arcs in G with tail » and head v. By e(u, v) we denote the
number of edges with endpoints ¥ and v. If X and Y are any subsets of ¥
and X=V~X we use the following notations:

a(X, Y)= Z a(u, v)

uc X, v&Y

e(X, V)= 2 e(v)

uck,ver
e(X)=e(X, X)
at (X)=a(X, X)
a-(X)=a(X, X)
c(X, Y)=a(¥, X)—a(X, Y)
c(X)=c(X, X)=a*(X)-a~ (X)
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18 V. Batagelj and T. Pisanski

c(X) will be called the charge of X. 0X or boundary of X consists of all lines

having one endpoint in X and the other one in X. The number of lines in 90X
is valency of X denoted as val (X). Here are some relations that will be used
later on.

e(X)=e(X), a* X)=a(X), val(X)=e(X)+a* (X)+a~ (X)
cX,Y)=—c(,X), cX)=—-c(X), ¢(X,X)=0
Lemma 1: Charge is an additive function; i.e:

Jor all XCV: c¢(X)= 2 c(v)
veX

Proof: Let t&X and Y=X-—t¢. Then:

W= 3 = 3 cmu)t+ S el u)-

vEX, ucX veY, ucX ue:\;
= 2 _chu- I coDF De(tu)=
vEY, ucY vey ucXx

= c(Y) + 2 e, B=c(¥)+c(t)
vev

Thus: ¢(X)=c(X—1)+c(t). From this recursive relation the additivity of ¢
follows.

If ¢(X) equals zero (is positive, negative) we say that X is neutral
(positive, negative). Graph G is neutral, if all XCV are neutral. Note that G
is meutral if and only if all vertices are neutral.

We say that X is even (odd) if it has even (odd) valency. G itself is
even if all its vertices are even.

Using the terminology developed so far we are able to paraphrase the
wellknown results concerning directed and undirected graphs [1, 3, 5]:

Theorem 2: Directed graph admits a cycle decomposition if and only
if it is neutral.

Theorem 3: Undirected graph admits a cycle decomposition if and only
if it is even.

The only attempt known to the authors, to solve the problem for gene-
ral graphs (i.e. partially directed multigraphs) is published in [2], pp 419 —421
as theorem XII— 5 which, transcribed in to our terminology says:
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Hypothesis: Let G be strongly connected graph. The necessary and suffi-
cient condition for G to possess an Eulerian cycle is: for any vertex vEV,
e(v)—|c(v)| must be nonnegative even integer.

It is almost evident that the condition of the hypo-
thesis is necessary. Unfortunately the graph in Fig. 1
fulfills it, yet it is not Eulerian.

Let X be a vertex set having a charge ¢(X). For
X to become neutral, one should orient |c(X)| edges of
0X in a prescribed way. We introduce

P(X)=e(X)~|c(X)|.
If P(X)<0, no orientation of G can render X neutral.

Let us see what happens to P (X) upon orientation

Fig. 1 or desorientation of some line p. Clearly P(X) does not

change if we orient or desorient lines that do not belong

to 0 X. When desorienting an arc from 0 X, ¢ (X) will be changed by 1 and e (X)

will be increased by 1. Thus P (X) either remains the same or it is increased

by two. This implies that an orientation of an edge from 0X either has no

effect on P(X) or diminishes it by 2. In fact if one of the two possible orien-

tations diminishes P (X) the other will have no effect on it and vice versa.
Thus we proved:

Lemma 2: Let p be any line and X any vertex set of G. An orientation
(desorientation) of p

a) has no effect on P(X) if p£oX
b) does not change P (X) or decreases (increases) it by 2 if pcoX

Now we are ready to prove the theorem that solves the problem of
Eulerian cycles in general graphs.

Theorem 4: Let G be any graph. G has a cycle decomposition if and
only if for each vertex set XCV, P(X) is nonnegative even integer.

Proof: The “if” part: The cycles of any cycle decomposition of G
induce a complete orientation H of G. Following theorem 2 in H each vertex
is neutral: ¢y (v)=0. We shall use subscript to indicate the graph. Whenever
the subscript is omitted the reference graph is G. Since H is directed graph:
Py(X)=—|cy(X)]. By lemma 1 ¢ is additive and ¢, (X) must be zero. We
proved, that P, (X)=0 for all XCV. Graph G is a desorientation of H. By
lemma 2 P(X)>Py(X) and P(X)—Py(X) is even. So P(X) must be nonne-
gative even integer. ‘

To prove the “only if”” part of the theorem we prove that any edge can
be oriented in such a way as to preserve the condition of the theorem. Next
we can stepwise orient the edges until we reach oriented graph. Since the
condition of this theorem implies the condition of theorem 2 in case of oriented
graphs there exists a complete orientation of G -that admits a cycle decompo-
sition. Hence G itself admits a cycle decomposition.

2%



20 V. Batagelj and T. Pisanski

Let e be any edge of G. We are going to prove that e can be oriented
so that the conditions of the theorem remain valid on every set X. There are
two cases:

1. All vertex sets XCV, such that e<=9X, have the property P(X)>0.

2. There is some XCV¥, such that e<9dX and P(X)=0.

In the case no. 1 any orientation of e will preserve the condition. This
is ensured by lemma 2.

The case no. 2 is much harder. To preserve the condition on X, e must
be oriented in a prescribed way — the other orientation would necessarly destroy
the condition, again by lemma 2. We have to prove that this forced orientation
will not cause the violation of the condition P(Y)>=0 for some other vertex
set YCV. This could only happen if e€0Y and P(Y)=0.

V can be viewed as a disjoint union of four sets A4, B, C and D:
A=XNY, B=X-4, C=Y-4, D=V—-(XUY).

Since the conditions of the theorem concern all vertex sets, we have:

() PA)=2m, @ PB)=2my,
3) P(C)=2m, 4 PMD)y=2m,
G PX)=0 (6) P(Y)=0

where m,, mg, mc, mp>0. We shall expand
this system of identities substituting c(4) by
c(4, B)+c(4,C)+c(4, D), e(A) by e(4, B) +
+e(d, C)+e(4, D) and so on. To shorten
the notation we are going to use subscripts
according to fig. 2. instead of ordered pairs, i.e,:
e,=e(B,A)=e(4, B), c,=c(B, A)= —c (4, B)
etc. Note that labelling and orientations of
graph in fig. 2 is arbitrarily chosen. The
arrows indicate the order of pairs.

The equations (1) —(6) are now rewritten as follows:

1) Cateyte=2my+|c,+c,+¢|
2) exte,te=2mg+|c,—c,—c,|
3) e+e,+e,=2me+|c,—c,—c,
“) e tet+e.=2mp+|c,—c,—c,l
(%) extete+ e =|cite+e,—cl
©") etete+ e =|ca+cs+c,—c,{

We continue the proof by reductio ad absurdum.

Suppose an orientation of e either violates the condition on X or on Y.
Then e has one of its endpoints in B and the other in C (it belongs to stream
§=(B, C)) or e belongs to stream t=(D, A)
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Case A: e belongs to the stream s.
c(X) and c¢(Y) are either both positive or both negative. This implies:

(72) le@) [+]e@)|[=|cX)+ec(¥)]

Using (7a) and the triangular inequality for absolute values we add (5')
and (6') and we have:

e;te,t2(ete)te,rey=|ci+2¢+c,+c—¢|<
(8a) | gt epto|tlates—cl=]c(A)|+|c(D)]
Substituting ¢ (4) and c¢(D) in (8a) by those from (1") and (4) we get:
exte,+2(e+e)te,+e, e t+e,+2e+e,+e,—2(my+mp)
this yielding:
e, < —(my+mp)<0 and finally e,=0.
But e¢,=0 contradicts our assumption that e belongs to stream s.

Case B: e belongs to the stream ¢. (thus e¢,>0)
¢(X) and c¢(Y) are neither both positive nor both negative. This implies

(7b) @) [+]e ()] =] e @) —e(D)]
By the same argument as in case A we get:
(8b) e,te,+2(e+e)t+e,+e,<|c(B)|+]c(C)]

Substituting ¢ (B) and ¢(C) in (8b) by those from (2') and (3') we deduce
e, < —(mg+mc)<0 and finally e,=0. This is impossible since e,>0.

We proved that any edge e0XN0Y with P(X)=P(Y)=0 can be
oriented so that neither the condition on X nor that on Y are violated. This
completes the proof of the theorem.

Lemma 3: In an even graph, for all XCV, P(X) is even.

Proof: By lemma 2 the parity of P(X) does not change upon an
orientation of graph. Since any orientation of even graph is even it remains to
prove this lemma only for directed graphs. In a directed even graph val (v)=
—=a+ (v)+a~ (v) is even for all vertices vE V. It follows that ¢ (v)=a* (v)—a~ (v)
is even to. Since ¢ (X) is additive, ¢ (X) is even for all XCV. Finally P(X)=
= —|c(X)| must be even.

If we put together theorem 1, theorem 4 and lemma 3 we observe:

Corollary 1: A graph G is Eulerian if and only if it is connected, even
and for all XCV, P(X)=0.
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Unfortunately in general the straigth forward application of this corollary
for testing whether a graph is Eulerian is highly impractical since there are
2171 sets X to be tested against P(X)<<0. To get better methods for testing
whether some vertex set X has the property P (X)<0 we have to develop some
more theories.

Let u be a positive and v a negative vertex in G. A path g leading from
u to v and lying entirely on E(G) will be called a discharging path. A set of
pairwise disjoint discharging paths with the proprety that a vertex w is an
endpoint of at most ¢(w) discharging paths will be called a discharging of a
graph. d(G) will denote the maximum cardinality of all dischargings of G. By
C(G) we will denote (1/2) ZV!c(v)I.
ve

We say that C(G) is a charge of G. Note that G is neutral if and only
if C(G)=0. C(G) is also the sum of charges of all positive vertices. Orien-
tation of a discharging path from u to v only affects charges on u and v.
It decreases c(u) by 1 and increases c¢(v) by 1. Thus it decreases C(G) by
exactly 1. Orientation of discharging paths of a maximal discharging will reduce
C(G) by d(G). Thus d(G)<C(G). If d(G)=C(G), we say that G is dischar-
geable.

Theorem 5: G is dischargeable if and only if there is no vertex set X
in G with the property that P (X)<0.

Proof: If G is dischargeable it can be oriented into a graph H so that
C(H)=0. Thus each vertex set X is neutral in H and

Py (X)=ey (X)—|cg(X)|=ey(X)=0
But any desorientation of H only increases P, so P(X)>0 for all X.

We use the contradiction to demonstrate the second implication. Assume
P(X)=0 for all X and d(G)<C(G). We are going to construct an undirected
graph G’ starting with E(G). Introduce new vertices s and ¢ Vertex s is
connected to each positive vertex u by c(u) edges. Vertex ¢ is connected to
each negative vertex v by —c(v) edges. Graph G’ is so constructed. The paths
from s to ¢ will be called (as usually) s—¢ paths. To each discharging path
there is associated at least one s—¢ path. To each discharging of G we
can associate a set of pairwise disjoint s—¢ paths. Even more: the maximal
number of disjoint s—¢ paths equals d(G)! By theorem 5.11 in [3] (a va-
riant of Menger thecrem) the maximum number of disjoint s—¢ paths equals
the minimum edge cut separating s and ¢ Let X’ be minimum cut such
that s X’ and t&X’. See fig. 3.

We use the following notations:
X=X -5, X=X'—-t=V-X,
k=eg (s, X), m=eg(t, X), n=eg(X,X)
Let ¢=C(G) and d=d(G). Then
d=c—k+n+m
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By hypothesis we have d<<c. Thus:
n—|k—m|<0
But ¢(X)=ec (s, X)—ec (t, X) and e(X)=eg (X, X) then:
PX)=eX)—|c(X)|=n—|k-m|<0
This contradicts the hypothesis P (X )}0 for all X. The theorem is proved.

If we want to traverse Eulerian cycles in Eulerian graph we need an
algorithm to test if graph is Eulerian, to construct Eulerian cycles or to explain
why graph is not Eulerian. So it is better to turn corollary 1 around:

Corollary 2: Given any graph G. It belongs to exactly one of the
Jfollowing categories:

C,:G has some vertices of odd valency.

C,:G is even but there exists XCV with P(X)<0.
C,:G is disconnected. Each component is Eulerian.
C,:G is Eulerian graph.

An algorithm to classify graphs according to corollary 2 can be constructed
along the following lines:

A. {Test for odd vertices} For each vertex compute its valency. If there
is any odd vertex present, return ‘“‘odd vertices and stop;

B. {Test for the set X with P(X)<0} Find maximal discharging and
label appropriately vertices. The set X consists of all labelled vertices.
If (at the end of this step) X is not empty, return “X with P (X)<<0¢
and stop, otherwise orient all edges of G lying on discharging paths.
(Note: this step consists of slight modification of Ford-Fulkerson
Max-flow algorithm — see [4]);

C. {Cycle decomposition} Construct a minimal cycle decomposition of G.
Number of cycles is the number of graph components. If G is not
connected, return ‘‘Eulerian components* otherwise return ‘Eulerian
graph* and stop.
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A Fortran implementation of the described algorithm can be obtained
from the authors.

Acknowledgment: We are grateful to dr. Drago§ Cvetkovi¢ for suggesting
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