PUBLICATIONS DE L’INSTITUT MATHEMATIOUE
Nouvelle serie, tome 25 (39), 1979, pp. 240—244

NONOSCILLATION OF NONLINEAR RETARDED
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Abstract. The forced n-th orber retarded equation

m
YD @)= i () b (¥ (& D)= (O
i=1

is studied for its nonoscillatory behavior, where the nonnegativity of the function
p; is not assumed, for each i=1,2,..., m. Under sufficient hypotheses, it is
shown that if y (f) is a bounded solution, then y () is oscillatory er tending to
zero as f—-o.

Recently, B. Singh [3] has considered the forced fourth order linear
retarded equation

1) yH@)+a@)y(gEN=>b(), 0<g()<t,

where a(t), g(t), b(¢) € C[R,, R], R, =[0, ), R(— o, o). And under some
sufficient conditions, he proved that every bounded solution of (1) tends to
Zero as f—> oo,

The purpose of this paper is to discuss the corresponding result of
Singh’s to the following nonlinear equation with retarded arguments

) YO O=S BB GlEO) -1
i=1

by using Kolmogorov’s general theorem [2].
Throughout this paper the following assumptions are assumed to hold:

(a’) piEC[R+’ R]’ l=1, 2,...,m,
(b) & CCIR,, R,] g(t)<t, limg(t)=oo, g(¢) is differentiable and
t—>00

has bounded derivative on R, i=1,2,...,m,

© fECIR,R], [ft)di<w,
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(d k€ CIR, R], xhj(x)>0 for x#0, and there exist two positive
constants K and M such that
k<" p, xzo,
x

for every i=1,2,...,m.

Sufficient smoothness for the existence of solutions for all large ¢ will
be assumed without mention. In what follows we consider only such solutions
which are nontrivial for all large ¢. The oscillatory character is considered in the
usual sense, i.e, a continuous real-valued function which is defined for all large ¢
is called oscillatory if it has no last zero, otherwise it is called nonoscillatory.

Theorem. Let the conditions (a)—(d) hold. Suppose that there exist two
positive constants k and ¢ such that '

t+k
(A) liminf 5 | p"(9)ds=e>0, p (r)=max{p, (), 0},

o ;T

t

Z pi ()dt<oeo, p; (t):max{—p,-(t), 0}
i=1
Then every bounded solution y (t) of (2) is oscillatory or tending to zero as t— co.

Proof. Let y(¢) be nonoscillatory. Without any loss of generality, we
may assume that y(t) is positive eventually. Since y(¢z) is bounded, there is a
positive constant L such that for >0

(3) ly ()<L

Let T be large enough so that y(r) and y(g;(¢)), i=1,2, ..., m, are positive
for t>T, Integrating both sides of (2) from T to f, we obtain
t

4) Yo () — y-b(T )—.Z pi () (¥[8 (] ds

’ . . i=1 }

t ; t
-5 [ @hGlnEDds+ f /() ds.
T

i=1 a

T

From (3), (4) and (d) we have

5) YD)~y (T) - M S f P () ¥ (8,(s)) ds
i=1 5

<IK'S fp,-— (s)ds+ff(s)ds.
i=1
T T
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Equation (5) suggests that

-

) S [ 5 )y @) ds<os.
i=1

In fact, if

00

S [ o7 @y (gis) ds= oo,
i=1

then due to condition (c), it follows from (5) that y"=D(t)>co as t— oe. But
this will force y(¢) to be unbounded, a contradiction. Hence (6) holds.

From condition (4) we have

¢ 5 [t @di=ce.
i=1
From (6) and (7) we obtain
8) lim inf y (¢) = lim inf y (g (¢)) =0,
t—>x t—00

where the subscript 7 in g;(¢) is dropped for convenience.
Now we will prove that

) lim ' (£)=0.

t->c0
From (5) and (6), we see easily that

B YO
as t—> oo. Hence for any small ¢, >0, there exists a ¢, >T such that for t>¢
(10) =D (1) |<e,.

Now we make use of Kolmogrov’s general theorem that, if |y(f)|<M, and
|y=D()|<M,_, on R,, then
-

YO @) <k, M, " M

n—1
n—1?
where k, ; is a positive constant depending on n, i and O0<i<n-1. (See [2,
p. 22)]). It follows from (3) and (10) that
yo@w—-0, i=1,2,...,n-2,
as t->oo. Hence (9) holds.

Suppose
(1) lim sup y (¢)>r>0.

t—>00
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From (8) and (11), there exists a sequence {b;}, j=>0 with the following pro-
perties (see [1])
(c,) lim b;= oo, b;>t, for all j, t, is the same as above.

j—
(c,) For each j, y(g(b))>r.
(c;) For each j>1, there exist numbers b/ such that b, ,<b/<b, and

¥ r
Y@<
2
Let a; be the largest number less than b; such that y(g (a,))=% and ¢

be the smallest number greater than b; such that for j>1.
r
12) y(g(cj))=?-

Now in the interval [a;, b;], there exists a d; such that by mean value
theorem

b;—a; 2(c;—ap)

r

But (9) implies that )’ (g(d;))—>0 as g(d;)— . Condition () implies g'(d) is
bounded. Therefore it follows from (13) that

lim (¢; —a;)) = oo.

J—>0

Also because of the way a; and ¢; were chosen
r
y(g (t))>?>0

on [a;, ¢;]. Now from (6), it follows that

0 <

o>3% [ 5 @) ds>§[§ [t (s)y(g,-(s»ds]
i=1 i=1 Lj=1
el d - —
> 5 Zx []gl f pi (8) ds] "

9
due to condition (4). This contradiction shows that r=0 and our proof is
complete. :
Example. Consider the following equation
t

t
——7

yO@)—e? y(t-m)—eTy (é-—n)=2 e 2 —e Lt>2w
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which has y(t)= —e~* as a bounded nonoscillatory colution that goes to zero
as t— oo. Here

f)=2e *—et,  [f)di< o,

pi (1) +pd (1) =e?

pi(t)=ps (t)=0.
Thus a'l the conditions of Theorem 2 are satisfied.

.

e [(pi (0) +p3 (1) dt =,

Corollary. Let the conditions (a)—(d) and (A) hold. if
pi(1)=0, i=1,2,...,m

then every bounded solution of equation (2) oscillates or tends to zero as t—> oo.

REFERENCES

[11 M. E. Hammett, Nonoscillation properties of a nonlinear differential equation,
Proc. Amer. Math. Soc., 30 (1971), 92—96.

[21 1. J. Schoenberg, The elementary cases of Landai's problem of inequalities
between derivatives, MRA Technical Summary Report &= 1147, Feb. (1972), Math=matics Research
Center, The University of Wisconsin, Madison. (Reproduced in Amer. Math, Monthly,
80 (1973), 121—158),

[31 B. Singh, Nonscillation of forced fourth order retarded equations, SIAM J, Appl.
Math. 28 (1975), 265—269.

Institute of Mathematics
Kobe University

Kobe, Japan

and

Department of Mathematica
Central University
Chung-Li, Taiwan

R.O.C.



	240.tif
	241.tif
	242.tif
	243.tif
	244.tif

