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1.

The LivSits papers [1], [2] were the first papers where the characteristic
matrix function (briefly the c.m.f) of an isometric operator (or of a general
bounded linear operator) with finite deficiency indices was considered.

Later, this concept was developed and transferred to some classes of ge-
neral bounded linear operators on the complex Hilbert spaces by V.M. Brodskii,
A. V. Strauss, C. Foias and B. Sz. Nagy and others.

In this paper we consider the characteristic matrix function of an isometric
operator on Wachs spaces, i.e. on the left quaternionic Hilbert spaces, with
quaternionic bilinear form (x, y), observing that all obtained results are closely
related to the (we think we can say) classical results of M. S. Livsits [2].

Since every Wachs space H is a special complex Hilbert space with the
form [x, y]=compl. part {(x, y) (x, y&H), certain constructions and properties
are (easily or hardly) translated to our situation, but in view of the existence
of the specific quaternionic structure, sometimes some special properties of
c.m.f. arise.

We consider here mainly such properties (characteristic properties) of the
c.m.f. of an isometric operator, by which they differ from the ordinary c.m.f.
of operators on the corresponding complex Hilbert space H*.

Throughout the paper, H is a left Wachs space, Hs-the corresponding
complex Hilbert space, and B (H), B(H*) the algebras of all bounded linear
operators on H and H* respectively. Since we assume that the field C of
complex numbers is imbedded in the noncommutative field of quaternions Q,
obviously B(H)C B (H"). _

We often denote by an index “s” notions corresponding (in H*) to no-
tions in H.
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226 Aleksandar Torgalev
2.

Let ¥ be an isometric operator in H, with the closed domain D (V)
(D (V)#H), with the closed range R(V) (R(V)#H) - both subspaces in H,
and let us suppose

dim D (V)" =dim R(V)! =n<co.

Then we say that V has deficiency indices (n, n).
It immediately follows that deficiency indices of V in H*® are (2n, 2n).

Denoting by O (V) and Os (V) respectively the sets of all bounded ortho-
gonal extensions of ¥ on H (i.e. H®), we have O (V)=0*(V)NB(H).

For subspaces
G,=R(I-zV), G.:=R(V-zl) (Iz]#1)
in Hs, we have that
dim, (G,)ts = dim, (G s=-2n
([2], p- 249).

We remark that in general case (|z|#1, zZR), the closed subspaces
G,, G, (in H%) are not subspaces in H.

By the way, we point out the following relations.
k(l) For every z&C, G_=KG, and GZL=KGZ’ hold (where Kx = jx, x& H), thus
G,, G, are subspaces of H at least for real values z.

(2) For every z (|z|#1, z&R), G,+G.OD (V).

The proof of (1) is immediate.

Since y&(G.)* is equivalent to (Vx, y) =z (x, y) (x&D(V)), interstanding
x by Kx we find that

<V(Kx)5 y> :Z<Kx’ y> =zj<x, y>
:j<Vx, y>=jz<x, )’> (VXGD(V))
thus z=2 or y&D (V) .
Since by assumption z& R, we get (G;)l_C;D(V)l, so that
G DODF)Y =D()=D(¥).
But since (G;)Ll is the minimal closed subspace (in H) containing G;, thus
exactly G;+KG;=G;+G‘; (which is closed because G, G; are closed for
1z|#1), we get
Gi+ G, 2D (),

which was asteted. [
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If Tis an arbitrary extension from O(V), and Kp={z:|z|<||T||-,
we have

(G)'s=(I~zT*)-'D(¥)*
Gy s=(I-2T) 'RV
for every z&Kr ([2], p. 250).

2.1)

3.

Since the dimensions of subspaces D (V)*, R(V)' (in H) are equal to
n, there exist two orthonormal bases - g,, ..., g, in D(V)l and g{,..., g In
R(V)*, from which using the relation

¥y =[x y]-jlKx,y]  (x, yEH)

we conclude that {g,,...,g,, Kg,,..., Kg,} and {gi, ..., g, Kgi, ..., Kg.}
are complex o.n.b. in these subspaces; thus

[.fp’ fq]z[flpls flI’]=Sp,q (p’ q=1s"- ’ 2”),
where

f={ &> 1<p<n ,_[ &, 1<p<n
i Kgp_n, n+1<p<2n’ Kg, 1, n+1<p<2n

We say that such bases are regular, and in further text we consider only
the regular bases in these subspaces.

Further, for an arbitrary T€ 0 (V), we according to [2] construct the
vectors

L @=U-2T%f,,  fi(2)=UI-2T)1f;

(p,g=1,..., 2n; zEK;), and the characteristic matrix function of Livsits
(of the operator T) is defined by

(3.1 Qr= (2)={wp, o(T; 2)}EM,, (C)

(M,,(C) — the set of all complex cquare matrices of order 2n), where

&p,q (T 2)=[(T —2I) £, (2), f4]

(p,g=1,..., 2n).
Denote by P,,(C)=P,, the set of all square 2nx2n complex matrices
of the form

where S, S,EM, (C).

15*
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Lemma 1. Let ©={1,EM,,(C) be the “matrix” of T defined by
2n
T&zsz,q.ﬂ (p=1"'-’ 2")’
g=1

ie. Tp,=[Tf,, f3]. Then T&P,, and the relation t<P,, is characteristic for
extensions TS O (V') (with respect to the extensions from O°(V)).

We omit the proof. [J

Defining next Gr(2)={[f, (2), fl}2nx2n, G1(2)={f, (2), fil}2nx2s (2EK7),
the LivSits characteristic function of T is

(32) Q7(2) =[G (2) — 26+ (2) ] [G1(2) — 267 (2)]

and the matrix function of V is

3.3) Q@@D=0Q,(2)=-2G(2)"1G" (2) (z|<D.
It holds

(3.4) Q) =1L, +Q (@) P [+ + Q2 (2)].

For an arbitrary T&0 (V), we denote by Q,,(T) the set of all matrix
functions S (2)EM,, (C) (z€K;) of the form

(*) [SI(Z) '—Sz(f)]’
;@ 5@
where S, (z), S,(z2)&EM,(C) are nxn matrix functions defined on the set

Kr={z||z|<1/|| T}
Obviously, if S(2)E Q,,(T) then for every real r (r & Ky) matrix S(r)EP,,.

Lemma 2. The product of two matrices S(z), R(z) of the class Q,,(T)
is a matrix of this class too.

If for an S(2)&Q,,(T), the inverse matrix S(z)~' there exists for every
zEKy, then S(2)71€Q,,(T).

We omit the proofs. []

Theorem 1. For every TEO (V) the matrix function Q. (2)EQ,,(T).
If conversely Qp(2)€0Q,,(T) for a TEO(V) then T O (V).

Proof. We prove first that matrices Gr(z), Gr(z) belong to Q,,(T)
and then apply the previous lemma.

We have for every z& Ky and p, g=1,..., m

[f;z+p(2)’ f;x+q] = [(I_ET*)—lf;wp’ fn+q] =
=[(/—2T*)~' Kg,, Kg,|=[K(I-2zT*)"'g,, Kg,]=

=[I—2T*)""'g,, 8,1=1/,(2), [},
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and
Vnip (@) 1=l ~2T*)""g,, Kg,]=

= —[K-K(I-2T*)"'g,, Kg]= —[I-zT*)"' Kg,, g,]=

= [f;z+p(z)af;1]' .

Thus G, (2)EQ,,(T), and in a similar way we get that Gr(z)E Q,,(T).
By virtue of Lemma 2 we find that Q,(2)€ Q,,(T).

Conversely, suppose Q7 (2)EQ,,(T) for a T€ O ).

Then by virtue of the previous part of the theorem, we find that
Q(2)EQ,,.(T).

From the relation (3.4) which could be written in the form
3.5) Q7(2) +Q() T Qr (D) =1+ 2(2),
then we can derive that the constant matrix tCM,,(C) belongs to the class
Py, (C).

Hence we have [T Kg,, Kg;1=[Tg,, g, [T Kg,, g1 = — [T g,, Kgg] (p, 9=
=1, ..., n), wherefrom we conclude that (K-*TK-T)g,, f;]1=0 (p=1,...,
n, gq=1,..., 2n), thus (K-'TK~-T)g,=0, because this last vector belongs
to R(¥)*'. It is then immediately (K- TK—T) f,=0 for every p=1,...,2n,
thus K-'TKx = Tx(x € D (V)'). But then K-'TKx=Tx for every xc HS,
contequently 77& B(H), thus T O ). [

4,

If U is a unitary extension from O (V) which maps f, into f; (p=1,...,2n)
(obviously a unitary operator from O (V)), and E*(¢) (O<¢<2 ) the spectral fa-
mily of U in H*, we have the family of hermitian matrices { (¢)={%,,,(1)}EM,,
defined by o (1) =[E*(2)f,, f,] (1<p, q<2n), and then

2n
f dlp (1)=3,4 (I<p,q<2n)
0

(2], p. 253).

Theorem 2. The matrix function {(t) (0<t<2~n) has the following
properties:

@ Crrmnra =8, 4= %y @m—1);
(b) Crt-i»p,q(t)"_:Cp,n+q(2ﬂ:_'t) (lgp’ 4<”)~
Proof. We have first that for every 1<p, g<n:

Cn+p.n+q(t)=[Es(t) Kgp’ Kgq]=[K(K—1Es (t)K)gp, Kgq]=
=[(K~'E*(1)K) g,, g,]-
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We shall now apply a result of K. Viswanath [5] related to the spectral
family of normal operators.

Let F=F* be the spectral measure of the unitary operator U (in H?)
and CJ0, t] (0<t<<2~x) the segment of a-c of the unit circle (0<{A<{7); then

E()= [ dF(A), and E*(0)=0, E*2m)=1.
clo, ¢]
By virtue of a result of Viswanath ([5], p. 342) we have that K-' F(A) K=

= F(A) for every Borel set A in the complex plane, so that

K'Es()K= [ dK-'F(A)K= [ dF(A)=

C[0,1] Cl0,1]

- [ ar).

CRn—t,2n]

Now, by covering the unit circle with a family of haifopen rectangles
{included down verteces), we get

[ ar@y= [ dFd)+ [ aF(A)=E@m=1 (0<i<2m),
CIo,1] C[l,27) Cl0, 27)

so that

.1 K'Es()K=I—- [ dF(A)=I-EsQ2n—1).

C0,2m—1]

Since this relation holds for +=0 and ¢t=2= too, it is satisfied for every
<0, 2«
Consequently we get

cn+p,n+q(t)=[(l'_E's (2TC—t)) 8p» gq] =
=8p,q_cp.q(2ﬂ_t) (l<p7 q<n)

In a similar way we find for every 1<p, g<n:

Cnip.g (1) =[E*(t) Kg,, g]=[K(K'E*(1)K) g,, KK~'g,]=
=[I-E*Q2n—-1)) g, K1g]=
= —lg,, Kg ] +[E°(2m—1)g,, Kg]=
=Cpneg@m—0). O

Let next Q,, be the set of all matrix functions S(z)EM,,(C) of the
form (x) whose domain is the open disc |z|<1.
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Theorem 3. The matrix function
27

U@= [ (¢t+2) (et —2)"1dE ()

0

belongs to the class Q,,.

Proof We have for every 1<p, g<n,

27w

Unipmia@=[ (e"+2) (e ~2)"1d, ., . (©)
0

2r
Unina@ = [ (e+2) (e ~2)1dT, ., (),
0

wherefrom, using properties (a), (b) of the matrix {(¢), and substituting ¢ by
2n—1(0<t<2 ), it follows

Zln+p.n+q(2)=ZZp.q(Z)’
Z[n+p.q(2)= _Z[p.n+q(z) (‘Zl<1),
thus 7/ (2)={llp.o (D}EQ:n- O

5.

Lemma 3. The complex Hilbert space H* possesses the structure of a
left Wachs space if and only if there exists in H* an antilinear involutive operator

Kc B(H*) with the property
[Kx, Ky]=Ix,y]  (x, yEH").

Proof. This condition is obviously necessary because in left Wachs
spaces H the operator Kx=jx(xH) has all required properties.

Conversely let us suppose there exists such an operator on a left complex
Hilbert space H. If we introduce in H* the quaternionic structure by gx=
=(z,4+jz,)x=2,x+Z, Kx (xS H), and quaternionic bilinear form by (x, y)=
=[x, Y1—Jj[Kx, y] (x, yEH), it is easily verified that H® becomes a Wachs
space H, and the quaternionic scalar product is according to the norm /x| =
=VIx, x] (because [x, Kx]=0). [J

Lemma 4. Let H, be the left vector space of all 2n-tuples x=
=, ... £,,) of complex numbers, with the scalar product

2n
[xs y]: Z Ep .7]‘,-
p=1
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Then defining the quaternionic structure by

Kx:K(El’--- » Ezn)=(_gn+1"-' ) gzna gls cee s Em)

the space H,, becomes a left Wachs space.

Proof. We omit proving that K has the properties required in the
previous lemma. [

We next mention that if é,~(3,,,...,3,,) (p=1,..., 2n), then
i p=Ké,(p=1,..., n), and the set {é, ..., é,} is an o.n.b. of the corres-
ponding Wachs space H,,. On the other hand, it is isomorphic to the left
Wachs space H,(Q).

Statement 1. The matrices Q(z), )/ (2) (1z|<1), as the operators in
H;,, have for every |z|<1 the following properties:

(a) 12@) <1,

()  Re)/(2)>0.

In general case, the operators Q(z), }/(z) are not linear on H,, but they
are linear at least for real values of :z.

Proof. The proof of (a), (b) given in [2], we only verify the last sta-
tement.

By definition, we have that

[Q)é,, é1=Q, ,(2) (z|<t; p,g=1,..., 2n),
thus

2n
Q2)é,= 35 Q,,(2)é, (r=1,..., 2n).
g=1

We next find for 1< p<n,
K—‘Q(Z)Kép=K—‘Q(z)ép+,,=

=3 K'Q,,,,(@)é,+
1

q=

K- Qn+p.n+q(z) Kéq=
t

g=

=2 Qoipnig @D+ T (— Qs (2)) Ké,=

g=1 g=1
= Zl Q,,.(2)é,+ 21 Q,4.q(2)KE,=Q(2)¢,.
q= q=
Since the like holds for p=n+1,..., 2n, we see that K'Q(z)K=Q(2).

Thus for zER, Q(z) commutes with K and consequently Q(z)EB(H,,). O
We mention the following theorem without proof too.
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Theorem 4. Two simple isometric operators V and V, with deficiency
indices (n, n) are unitarly equivalent if and only if their c.m.f. are connected by
the following relation

Q@)=uQ,(z)v (z|<1),

where u, v are constant unitary matrices of the class P,,. []

6.

Let next L° be the vector space of all complex continous functions
7:10, 27]—>Hjn, f(t)=(f, (1), ... , f,,(t)) defined on segment [0, 2 7], and for
a hermitian matrix function o (t)={s, ,(t)} of order 2n, let us define ([2])

p,q=

o - 2 L
(++) A f fo ()2, ds, ().
1
0

2n
Together with conditions considered in [2] i.e. 6; ()= 3 6,,(0)2,2,
pyq=1
is right continuous and non-decreasing in #(0<t<2m, Z =(z,, ..., z,,)EC?")

2n
and f do, ,(t)=3, ,(1<p, g<2n), we additionally suppose that the matrix
0

function o (¢) satisfies for every &[0, 2x] following conditions:

(6.1) [cn+p.lx+q(t)=8p,q—cp,q(2n—t)a
°n+p.q(t)=°'p,n+q(2n'— t)
(I<p, g<n).

Statement 2. The space L* is a (non complet) Hilbert space with
scalar product (*%).

If H* is the corresponding completion of L, introduce the quaternionic
Structure in L by

~Jarp(2m—1), 1<p<n

KA - %
(&), (1) [ frn@m—1), n+1<p<2n

and in H*s by continuity.
Then H* becomes a left Wachs space.

Proof. We prove only the last ascertion, because all that remained is
due to LivSits [2].
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Since almost all conditions from Lemma 3 are easily verified, we only

verify that relation [Kf, Kg]=i?,—gj on the space Hs, or (which is sufficient)
on the subspace L, holds.

If ()= s fon @) 8O =& (D)., &a (1)

then
27
Fidl= S [ 608 0d0, ()41, (1)8nq(d0, g (D)+
P, q=1
+f;1+p(t)g_q—(T)dGn+p,q(t)+f;t+p(t)gn+q(’)dcn+p,n+q(t)}r
2n
KKl = S [ (Forp@r-D)garg@m—1)do, q(1) -

p,q=1
0

_ﬁt+p(2n_t)gq(2n_t)ddp,n+q(t)_
'—fp(zn__t)gn+q(2n_t)d6n+p.q(t)+
+fp(271:—'t)gq(ZW—t)dGn+p,n+q(t)}'

Using the prope:ties (6.1) of the matrix function o (¢), and apply.ng them
to each of addends in above expressions, we directly get the required property. []

Denoting further
L) ={fEL: f,,=0,p=1,..., n},
H (i) = completion of L (i) (in H¥)
(the smallest Hilbert subspace of H* containing L (i)), we get
KL()={fELs: f,=0, p=1,..., n}, and
Ls=L(i)+KL (i), H*=H(@)+KH().

Remark. In general case, H (i) and KH (i) are not orthogonal (in H¥),
and the orthogonality occurs if and only if
6p,n+q(t)—=_6n+p.q(t)EO (0<t<2ﬂ; 1<p, g<n),
thus o (¢) is of the form

6(,)z[crl(t) 0 ]

0 o)
Further let H be a left Hilbert space, H*=H (i)+ KH (i), when H (i) is a

complex Hilbert subspace of H, UCB(H) be a unitary operator on H, an
extension of a complex unitary operator U (i)& B (H (7))-
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Lemma 5. If E;(t) and E*(t) (0<t<2m) are the spectral families of
operators U (i), U in spaces H (i), H* respectively, then E; (t)=E*(t) | H@y» and
Jor x=x,+Kx,(x,, x, EH(i)) the next holds

(6.2) Es(t)x=E () x, +K(I—E (27— 1) x,.

Proof. Let us put D’(t)=E*(t)| 5. Then D°(¢r) (0<t<<2w) is a
family of symmetric operators on H (i), increasing in ¢&[0, 2x], D*(0)=0,
Ds(2n)=14, and from

2w

[Ux, yl=[ *d[E*(t)x,y]  (x, yEH?)
0

we get especially

2
(6.3) [Ux,, y]=[ et d[E*(t) %0, ¥]  (x,€H(i), yEH).
0
Since
2r
(6.4) [U () xo» Yol = [ €*dIES (t) Xos 7ol (%o Yo EH (),
0

the unigeness of the spectral family of U (i) implies that E; (t) = D* (t)(0<t<2m).

Using this, from (6.3) we get the following (important) relation:

27w
(6.3) [U ()%, Y1= [ "dIE] (1) %,, 3] (%€ H (i), yEH).
0
Further, if x=Kx,&KH (i), we obtain .
Es(t)x=FE*(t) (Kxp))=K(K1Es(t)K)x,=K(I—-E*(2r—1))x,=
=K(I-EQr—1)x,,

which completes the proof. []

Remark. Here we do not assume that H (i) reduces U (in H®), that
is H@L,KH(@). O

Theorem 5. A matrix function Q(z) of order 2n defined for |z|<1,
is a Liv§its characteristic matrix function of an isometric operator V with defi-
ciency indices (n, n), if and only if it satisfies:

(1% QO)=0;

(2° Q(2) is analytic for |z|<1;

(3" Q) ||<1 for every |z|<1 (in the space H3,);
4) Q@EQ-
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Proof. The:e relations are obviously necessary.
Next let us suppose that Q(z) satisfies these conditions, and

U@ =U-Q@IT+Q@1  (z]<1)

(thus }/ (2) S B(H3n))-
By virtue of the Lemma 2, the matrix //(2)€0Q,,.
As in [2], we find a hermitian matrix function o (#)={c, ,(t)} (0<1<2 )
with the property
2w

(6.5) U F 81=[ (e +2) (¢ -2 1d[e (1)}, 2]  (f, g€ Hin,
0

thus
2m

U@ =] (¢+2) (e ~2)"1ds (1),
0 .

2

and [ do(t)=1I(H,,).
0

We assert that the matrix ¢ () possesses the following properties:

(@) °'n+p.n+q(t)=8p,q“Gp,q(zn‘t);
®) Srpa =Gy g@m—1)  (0<I<27).
Since
2n

Unsomra@ =] (€ +2) (€ —2)"1dGyyp raD)=
0

2w
=_[ (e—i"l‘z) (e—i'~z)—.l d(sp,q’— o'n+p,n+q(27':_t))’
0

27
Up (D= (€ +2) (e —z)1do, (1),
0

from the fact that }/(z2)&Q,, and uniquiness of the matrix ¢ (#), we obtain
Gp,q(t)=8p9q"‘o'n+p,n+q(2n_t) 0<r<2 7).
In a similar way, we prove the property (5').
Next let L5, L (i), H* and H* be the spaces from Statement 2.
Define an operator U on L* by
#f@,  fEL()
et f@t), fekL@)’
and further on H* (i.e. on H) by continuity.

f) (t)=[
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The operator U is a unitary operator on H.
Let Es(¢) (0<t<2m) be the spectral family of U on H* and hence
E; (t)=E*(t)| g the spectral family of unitary operator U )=U|gu in H@).

Next let é,=(3, ,,..., 3, ,,) where 3,,¢(t)=8, (p,q=1,...,2n). Then
é,CL() (p=1,...,n), and é,, ,=Ké,(p=1, ..., n).

By virtue of' the relation (6.3"), entirely equal to [2] (p. 257), we obtain
that for any interval ACJO0, 2 x],

[E*(D)é,, é)= [d[E; (1)é,, é,]= [dIE*(1)é,, é,]=
A A

= fdcp,q(t)
A

for 1<p<n; 1<€qg<2n.
Therefrom: o, , (1) =[E*(t)é,, €] (1<p<n; 1<q<2n).

It remains to prove that the above equality holds for n+ 1<p<2n,
1<g<2n also.

But properties (a’), (b’) of the matrix o (), and relations (a), (b) fiom
Theorem 2 imply that

p,q (1) =[E*(1)é,, é]
for every 1<p, g<2n.
Consequently,

2r
(6.6)  Upq(@) =] ("+2)(e*—2)1 d[E* (1) &, él  (<p, q<2n).
0

If G={fCH: (e, f[)=0, p=1,..., n}, that is
G={fcH:[¢,, f1=0, p=1,..., 2n},
and Vf=Uf (f€G), then by virtue of (6.6), Q(z) is a Livsits c.m.f. of the

operator V. [

7.

Among the other “characteristic” properties of c.m.f. operators on Wachs
spaces, we shall mention only the following property.

Let us introduce the functions
k, (2) = det (Q (2) + 7) (z|<1),
ky (2) =det (I, +Q(1/2) %) (|z]>1),

where T is the “matrix” of an arbitrary operator T€ O (V).
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Since the spectrum of an arbitrary operator T& B(H) is an r-symmetric
set, in view of the Theorem 6 in [2], we may expect that

ky(2)=0 iff k,(2)=0 (v=12).

Really, we have the next assertion.

Theorem 6. For |z|<]1, and |z|>=1 respectively, the following equali-
ties hold:
(6.7) ky(z)=ky(z) (v=1,2).

Thus ky(z) is real for every real z.

Proof. Prior to proving this, we shall prove the following property of

block-matrices: If the matrices 4, B, C, D& M, (C), then
,iA C _[ A —C;_| D —B’

B D| |-B D| |-Cc 4|

Indeed, when substituting the first and the second columns, and then the
first and the second rows in the third block-matrix, we get

D —-B -B D
—-C 4 A4 —-C

= (=1

- (=1

2

Denoting next by a, b, ¢, d respectively the numbers of elements of the matrix

[ ; _g] which are elements of 4, — B, —C, D respectively, in the general

-C

. A .
term of the development of determinant ; s , it is not hard to see that

at+b=c+d=a+c=b-+d holds, so that a=d, b=c.
Hence, in this term, in comparison with the corresponding term of the

determinant c the factor (—1)°(—1)®=(—1)®= +1 appears, so that they
coincide.
Consequently,

b

I

which completes the proof.
Next, denote by @®: M,,(C)—> M,,(C) the transformation which maps
the block matrix [A C] into [ b —B].
B D -C 4
By virtue of the Theorem 1, we see that the c.m.f. of an arbitrary ope-
rator T€ O (V) satisfies the relation Q (£)=®Q(2) (|z|<1), and 7 =® () holds.
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Since the mapping ® is a homomorphism, we easily find that

k,(z)=det(Q(Z)+7)=det (PQ (@) + P (7)) =

— et (@ (Q (2) + 7)) = det () @) + 1)

thus k,(z)=k,(z) for |z|<1.
Similarly,

k()= det (I, + DA (1/5) @ (+9) =

—det(@ (1 Q(1/7) ) =det I+ Q (1)) 7%) =

=k, (2), (lz|=D
qg.e.d. O

Note. We wish to announce further investigations of the characteristic
matrix functions of general linear operators, or contractions, relevant and
inspired by the papers of V.M. Brodskii, M.S. LivSits, A.V. Strauss, Yu.L.
Smuljan, B.Sz. Nagy, C. Foias, etc. :
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