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0. Introduction

Boolean algebra is called rigid if it has no one non-trivial automorphims.

Already Birkhof [2] arose the question of existence of rigid Boolean al-
gebra. Katetov [5] was first to construct rigid Boolean algebra of the power 2¢.
To answer de Groot’s and McDowell’s [4] question Lozier [6] constructed rigid
Boolean algebra of the power 2%, for every cardinal x>w. McKenzie and
Monk [7] constructed rigid Boolean algebra of power A, for every strong limit
cardinal A>w. de Groot [3] shows that there exist exactly 22“ isomorphism
types of rigid Boolean algebras of power 29, while McKenzie and Monk [7]
show that there exist exactly 22 isomorphism types of rigid Boolean algebras of
power 2%, where » is such a regular cardinal that 2*<(x, for every A<x.

In this paper we shall show that for every cardinal x> there exist
exactly 2% isomorphism types of rigid Boolean algebras of power » (there is
no rigid Boolean algebra of power 1, 3, 4, 5,..., w). This completes the
discussion of the given problem (especially, by this we get the answers to pro-
blem 8 and 9 of [7]). Besides, we can positively answer on problem 6 of the
same paper. At the end we give one answer on problem 7 of the same paper.

1. The Main theorems

Theorem 1.1. For every cardinal w>w there exist exactly 2* isomorp-
hism types of rigid Boolean algebras of power x.

Proof Let x be a regular uncountable cardinal and let it keep this
property until we especially change its properties. Let SCx be an arbitrary
stationary subset and let f:S—>x be an arbitrary mapping. Let S ={aES|
f()<a}. If S, is stationary, then according to known Lemma about regressive
function we know that there exist stationary S,CS; and B<x, so that
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j;’ (S,)={B}. Let us assume now that S, is not stationary.  Then, the set

s — 8, is stationary and for every 2ES; f()>=a holds. Let

C={a<x|lim () ABES; AB<a—f(B)<a)}.

It is clear that C is a closed and unbounded subset of x and so cNS, is
stationary. We can easily verify that f(a)<f (B), for every a, BCNS,, a<fB.
So, for an arbitrary stationary SCx and arbitrary mapping f:S—»x there exist
either stationary S, CS and B<x, so that f (S = (B}, or there exists stationary
S,C S, such that fAS, is 1 -1 mapping and f(@W=a for every acS,. We
sha'l use this fact later on.

Let D={a<x|lim(«) Ac¢f(x)=w}. For every «=D we fix in advance a
strictly increasing continuous function Jaiw+ 1%, such that f,(0)=0 and
Je(@)=a. :

For every subset SCD by E(S) we denote the set {/fx|«ES}, which we
always consider to be ordered by relation < of lexicographical order. The
following fact will be useful:

(*) If (E(S"), <) is order-isomorphic to a subset of (E(S""), <), then
S’ —S8" is non-stationary subset of x (for the proof see [1, Theorem 5.3. (i)]).

Let SCD be stationary, then omitting nonstationary subset of S we can
get a §'C S with the property that {yES'|f, < f, < fs} is stationary, for every
%, BES, fu<<fa (see [1, proof of the Corollary 5.6.]). This fact can be ex-
pressed by words that every non-trivial interval in E (S) is stationary.

Let SCD be stationary and let £ (S) have all intervals stationary. By B (S)
we denote Boolean algebra of all finite unions of intervals from E(S) of the
form [x, »), x, yEE(S)U{— o, +0}. So, jB(S)[=]E(S)|=x.

Let §', S”CD be stationary and let E(S’) and E (S”’) have minimal
elements and all non-trivial intervals stationary. Let us assume that there exists
a strictly increasing mapping H: B(S’)—>B (8”). Let us then prove that S=
=S5"—8" is not stationary.

Let us assume the contrary — that SCx be stationary. For every a S
we put b, =[0, f,)EB(S"). So, for £, < f& «, PES we have that H (b,)C H (by).
Since H(b,)C B(S"), there exist unique decomposition

H (b,) = U{[xa ¥ |i<n(x)},

where 7 («) C o, xf;, yL E(S")U{+ o} and xf; < y; < xf;“, forevery i<n(a)— 1.
Since S is stationary, there exists stationary TCS and n<w, so that n(x)=n,
for every a & T. Without loss of generality we can assume that T'=S, namely,
that n(«)=n, for every «=S. Mapping 4 : S—>x is defined by A(x) =B, if f3=x,°,
xS, BE&S”. According to the above there exist either stationary S,CS and
Bo<<x so that /""(S,)={B,} or there exists stationary S, CSsuchthatApSis 1-1
mapping and #(x)>a for every €S, (because of the fact that dom (h)N
Mrang(h)= ). Let us show that the second case cannot happen. Let us assume
the contrary, i.e., that there exists such §'CS. Let a, BCS) and f,<f;.
Then xg>>x;, since H (by)C H (bg). Then x2>x0, i.e., friy > S since A S,
is 1—1 mapping. So, we showed that ({fz| €S}, <) is inversely similar to
the subset of (E(S”), <). But, this cannot hold, for we can directly check



Rigid Boolean  algebras 221

that {f,|«&S,'} contains uncountable <(-well ordered subset and E(S”) has
no uncountable >=-well ordered subset. So, there exists stationary S, CS, such
that xa—xg = x°, for every «, BeS,.

Let us con51der now a mappmg /:S8—>x% defined by l(oz) B, if «=S,,
BeS” and fz= y¢ and /(a)=0 if Vo= + 0. We know that there exist, either
stationary S,C S, and B, <x, so that /' (S,)={B,} or there exists stationary
S,’CS,, such that /MS,” is 1—-1 mapping and /(«)>a for every aS,". Let
us show that the second case cannot occur. Let us assume the contrary, i.e. that
there exists such S,’. Let a, BES," and f, <f5. Then ya<y,3, since H(b,)C
C H (bg). Then ya<yg, Le. fiop<fig since IS, is 11 mapping. So, we
showed that ({f, | «ES,'}, <) and ({f3 {BE!"(S,)}, <) are isomorphic. Since
S, is stationary, then, according to (*) we conclude that /"’ (S,’) is a stationary
subset of x. However, this is in contradiction with the fact that [='pI"(S,)
1s a 1—1 regressive mapping. So, there exists stationary S, S, such that
V9 =yo =" for every a, « es,.

Repeatmg this procedure 2n times we get a stationary set S§,,CS,,_,
C.-.CS, such that x, =x, =x' and ¥ =y =y for every i<nand a, o' €5,,.
It means that H(by)= H (b,) for every a, o' &S,,, which is contradictory with
H:B(S)—>B(S”) is a strictly increasing mapping. This contradiction proves
that §’—S” is nonstationary.

Let SCD be a stationary set such that every non-trivial interval in E (S)
is stationary. Let us prove that B(S) is a rigid Boolean algebra. Let us assume
the contrary, i.e., that there exists non-trivial automorphism H: B (S)—B(S).
We can easily find b, c&B(S), bc= @, such that HM(B(S)Nb) is isomor-
phism of Boolean algebras B(S)Mb and B(S)Mc. Let 8" ={acS|f, &b}, "=
={a &S| fyEc}, then by assumption S" and S’ are stationary sets and SN S = &.

Analogously to the above we should get a contradiction. So, B(S) is a rigid
Boolean algebra.

According to [9] there exists a family T,C D, a<<x of mutually disjoint
stationary subsets. It is also known that there exists a family X,, a<2* of
subsets of x, such that X, — Xz~ & for every «, B<<2%, a#p. For every a<2*
we put S, = U{T5|BEXa} The family S,, «<<2* has a property that S,—Sg is
stationary for every «, f<<2* az{B. Without depraving this property we can
assume, omitting nonstationary subset of S,, that every non-trivial interval in
E(S,) is stationary.

According to what was already proved we know that B(S,), a<<2%, is a
family of power 2* of mutually nonisomorphic rigid Boolean algebras of power x.

Let us assume now that x> is a singular cardinal, i.e., that there exists
strictly increasing sequence x,, a<<A=cf(x) of successors with supremum
equal to x. Let S,C.D(x,) be stationary subsets, such that E(S,), for every
<A, has all non-trivial intervals stationary. Let us assume that E(S,); a<A
are disjoint and that they have minimal elements. Let E= \U{E(S,)|a<2A}.
Let x, y&E, then we put x <y if x€E(Sy), yCE(Sp) and a<B or x, yE E(Sy)
and x <y, where < is the lexicographical order of the set E(S,). We denote
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by B(E) Boolean algebra of all finite unions of intervals from (E, <) of the
form [x, »), x, y€EU{— 0, + }. So |B(E)|=|E|=x.

Let B(E) and B(E’) be two so obtained Boolean algebras and let H:
:B(E)—~>B(E') be isomorphism. Since E(S,)&B(E), H maps B(E)]E(S,) =
=B(S,) onto B(E')} H(E(S,)). Since x,, a<<Ais a strictly increasing sequence,
according to the fact that {B(E)ME(S,)|=x%, it implies that H(E(S,))=
=E (S, )C B(E"), for every a<<\. So isomorphism of Boolean algebras B(S,)
and B(S,') is induced by H for every a<CA. By similar arguments we conclude
that every algebra of the form B(E) is rigid. This, with already shown, proves
that there exists a family of power Il {2%* | x <A} = 2* of mutually nonisomorphic
rigid Boolean algebras of power x. This finishes the proof of the theorem.

Stone space of Boolean algebra of the form B(S) (resp. B(E)) is ordered
and is obtained from Dedekind’s completion of linearly ordered set (E(S), <)
(tesp. (E, <)) by doubling every nonend-point from E(S) (resp. E).

McKenzie and Monk [7, Problem 6] put the following question: Is there
an infinite BA with no non-trivial one-one endomorphism?

The answer on this question gives the following theorem which we already
proved.

Theorem 1.2. Let » be a regular uncountable cardinal. Then there exists
a family B,, a< 2% of Boolean algebras, each of power x, so that B+ Bg, for
all «<<B<2*%, and every strictly increasing mapping H :By—Bg, «, B<<2* must
be equal to the identical mapping of the Boolean algebra B,.

It is now natural to put a question whether theorem 1.2. also holds for every
other cardinal »>w. We can answer positively to this question under assump-
tion that ¥'=L. More precicely, of V=L we only use the fact that for eveiy
successor x> there exists stationary SCx such that SN« is nonstationary
subset .of « for every a<<x and ¢f(«)=w for every a<S. The proof of this
can be settled applying the same procedure as in proof of the theorem 1.1.
and using the fact that every subset of E(S) of power <x is equal to the
union of countable many of its <(-well ordered subsets (see [1, Lemma 7.1}).

McKenzie and Monk [7, Problem 7] also state the following question:
For which infinite cardinals » do there exists BA’s of power x with no non-
-trivial onto endomorphisms?

The authors propose this problem in this form because Rieger [8] constructed
Boolean algebra without non-trivial onto endomorphisms, but its power is rather
'arge. The following theorem gives, completely enough, the answer to this question.

Theorem 1.3. Let x be a regular uncountable cardinal. Then there exists
a family B,, a<2* of Boolean algebras, each of power %, so that By#Bg, for
all a<B<<2%, and every onto homomorphism H: B,—Bg, o.<<p<2*, must be equal
to the identical mapping of the Boolean algebra B.

Proof: Let x=c¢f(x)>w, and D={a<x|cf(x)=w}. Let SCD be sta-
tionary subset that every non-trivial interval in E(S) is stationary (see the
proof of theorem 1.1.). Let us prove that Boolean algebra B(S) defined
above has no one non-trivial onto endomorphism. Let H:B(S)— B(S) be
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an arbitrary onto endomorphism. Let b, = (-, f,) € B(S), for a« &S It is
clear that {b,|aCS} U {@, E(S)} is a base of the Boolean algebra B(S).
If H is one to one mapping on {by|a & S} then H is automorphism of
Boolean algebra B(S) hence, according to the proof of theorem 1.1 H=id.
So, we can suppose that there exist «,, 8, &S, «,#B,, so that H(b,)=
= H (bg,). For example, let f,,<fq,, then by assumption S’ = {« €S| f, < f,<< Sao}
is stationary and H (b,) = H (b,,) = H (bg,), for every a©S’. Now, let ~ be an
equivalence relation on E(S) defined by: Ja~fa iff H(by)=H(bg), «, BES.
Equivalence classes of ~ are, clearly, convex subsets of E(S). Let {feleET},
TCS be a set of representatives of equivalence classes and let f,, be the re-
presentative for the class [fo,] (=[fs)), i.e. «,&T. Hence, SNT= . Besides.
we can immediately verify that {H (b,) |« T} is a monotonous base of algebra
B(S) and that H(b,)# H (bg) for o, BET, a#B. Let oS’ be an arbitrary
ordinal. Then there exists representation

by=U{—HDNH G | i<n(a)} (**)

where n (0) Co, X, VoE{by |[YETY U {2, E(S)}, i<n(a) and H(x)SH(L)S
gH(xfo), for i<n(a)— 1. Since S’ is stationary there exists stationary UCS’ and
n<o, so that n(a)=n, for every a = U. Let «, B U and f, ~fa- Then, according
to (**), we conclude that H(xg)QH(xg) must hold.

Let us define h:U—x by h(ax)=B, «CU, BET if bg=x2 and h(x)=0
if xX3= (let us remember that bg=(-, fz)C B(S)). Using previous procedure
we know that there exists either stationary U, CU and B,<x so that & (U,)=
={B,} or stationary U,’CU so that A U,’ is one to one mapping (and & («)>
>a, aU,’). Let us prove that the second case is impossible. Let us suppose
the contrary, i.e. that there exists a stationary U, CU with properties mentioned
above. Let o, BEU,” and f, < /- Then f, 5 <fh since by C by and
h()#h@. It means that f, + f, ) «SU,’, is inverse isomorphism of linearly
ordeied sets ({fy|acU,"}, <) and ({fh |2 S U,’}, <) what is impossible
because of the explanation given in the proof of theorem 1.1.

So, there exists a stationary U; CU and B,<\x so that k' (U,)={8,} which,
by definition, means that H(xg)zH(xg), for every o, BEU,. Let a, BE U, and
Jo<fa. Then H (yg)(_:H(yg), according to the property of the set U, and (**).
Mapping /: U,—x is defined by /(x)=8, aclU,, BeT if bﬁzyg or [(a)=0 if
Ya=E(S). So, there exists either stationary U, C U, and B<x so that (U, ={B,;}
or stationary U,CU, so that /[ U, is one to one mapping and I(«)>o« for
acU,’. Let us prove that the second case is impossible. Let us assume the
contrary, i.e., that U,’C U, has mentioned properties. Let a, Bc U, and f,<fs.
Then f<fi(e) since b;,yCbyg and /(«)£/(B). This means that {fo]xE
€U}, <) is similar to the ({f,|aEl" (U,)}, <). Since U,  is stationary,
according to (*), we conclude that /" (U,") is stationary what is in contradiction
with the fact that /="' M/ (U,) is one to one regressive mapping. This contra-
diction proves that there exists stationary U,CU, and B,<» so that /" (U,)=
={B,}. This means that H(yg)=H(y8), for every «, BEU,.

Repeating this procedure 2n time.s we obtain.stationa.ry set U,,CU,,_,C
C -+ QU,CS" such that H(x,)=H(xg) and H(y)=H(y}) for every i<n and
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every o, BCU,, According to (**) this means that b,=bg for every o, B U,,
which is impossible. This contradiction finally proves that H=id

Analogously, we can prove that there is no onto homomorphism H:

:B(S)—>B(S") if §'—S is stationary. This shows that the family B(S,), a<2,

constructed in the proof of theorem 1.1 satisfies the condition of theorem 1.3
what finishes the proof.

The natural question arises again: Does theorem 1.3 hold for every car-
dinal »>w. We can positively answer to this question with assumption that
for every successor x>, there exists stationary set SC{a<x|c¢f(a)=0w}, such
that S« is a nonstationary subset of « for every a<». This can be proved apply-
ing arguments similar to the above and according to the remark after theorem 1.2.
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