ON SOME CLASSES OF DIFFERENTIAL EQUATIONS

Bogdan Rzepecki

(Received June 30, 1977)

In this paper we present results on the existence, uniqueness and continuous dependence on given functions of a solution for the Cauchy problem with retarded argument. These facts follow as a consequence of some applications of the "generalized metric space" (not every two points have necessarily finite distance) (see Luxemburg [8]).

Assumptions (i), (ii) and (iii), given below, are valid throughout this paper and will not be repeated in the formulations of particular theorems. Suppose that:

- (i) I = [0, a], E is a Banach space with the norm $||\cdot||$;
- (ii) the function $g: I \to (-\infty, \infty)$ is continuous and $g(t) \le t$ for every $t \in I$, and let $m = \min\{g(t): t \in I\}$;
- (iii) the function $\varphi:[m, 0] \to E$ is continuous, and the function $\tilde{\lambda}:[m, a] \to (-\infty, \infty)$ satisfies the following conditions: $\tilde{\lambda}(t) > 0$ for every $t \neq 0$, $\lambda = \tilde{\lambda}|_I$ is a bounded function on I, and $\sup \{(\lambda(t))^{-1} \cdot \int_{0}^{t} \lambda(s) \, ds \colon 0 < t \leq a\} < \infty$.

We shall consider the problem of finding the solution of the equation

(+)
$$x'(t) = f(t, x(t), x(g(t)))$$

satisfying the initial condition

$$(++) x(t) = \varphi(t) for m \leq t \leq 0,$$

where x denotes an unknown function, g, φ and f from $I \times E \times E$ into E are given continuous functions.

1. O. Kooi [4] (comp. [8]) has proved the uniqueness of a solution of the Cauchy problem for an equation x' = f(t, x) and the uniform convergence of sequence of successive approximations for this problem to this unique so-

lution, when continuous bounded function f had satisfied the following conditions:

$$t \cdot |f(t, u) - f(t, v)| \leq K |u - v|, t^{\beta} \cdot |f(t, u) - f(t, v)| \leq L |u - v|^{\alpha}$$

for $0 < t \le a$ and $-\infty < u$, $v < \infty$, where K > 0, L > 0, α , β are constants such that $0 < \alpha < 1$, $\beta < \alpha$, $K(1-\alpha) < 1-\beta$. (For $\beta = 0$ we obtain conditions for the uniqueness of M. A. Krasnoselskiî and I. G. Krein [5].)

We generalize the result of Kooi, applying the theorem on contraction in a generalized metric space [8].

A generalized metric space (X, d) is a pair composed of a non-empty set X and a distance function $d: X \times X \to [0, +\infty]$ satisfying the usual axioms for a metric space. If further: every d-Cauchy sequence in X is d-convergent (i. e., $\lim_{p, q \to \infty} d(x_p, x_q) = 0$ for a sequence (x_n) in X, implies the existence of an element x_0 in X such that $\lim_{n \to \infty} d(x_n, x_0) = 0$, then X is called a generalized complete metric space.

Our results are proved by the following theorem of the type of Banach fixed-point principle [6]:

Let (X, d) be a generalized complete metric space, let T_0 and $T_n(n = 1, 2, ...)$ be mappings of X into itself such that $\lim_{n \to \infty} d(T_n x, T_0 x) = 0$ for

all x in X. Suppose, that there exist an element $z_0 \in X$ and a constant k, $0 \le k < 1$, such that $d(z_0, T_n z_0) < \infty$ $(n = 1, 2, \ldots)$ and $d(T_n x, T_n y) \le k \cdot d(x, y)$ $(n = 1, 2, \ldots)$ for all $x, y \in X$ with $d(x, y) < \infty$. Then, the equation $T_m x = x$ $(m = 0, 1, \ldots)$ has one and only one solution $u_m \in X$ such that $d(u_m, z_0) < \infty$ and $d(u_n, u_0) \to 0$ as $n \to \infty$. Moreover, every sequence of successive approximations $x_n^{(m)} = T_m x_{n-1}^{(m)} (n = 1, 2, \ldots)$, where $d(x_0^{(m)}, z_0) < \infty$, is d-convergent to this unique solution u_m .

2. For all continuous functions x, y from [m, a] into E, which are identically equal to the function φ on an interval [m, 0], we define the following distance function:

$$d(x, y) = \sup \{(\lambda(t))^{-1} \cdot || x(t) - y(t) || : 0 < t \le a\}.$$

We have $(\sup_{0 < t \le a} \lambda(t))^{-1} \cdot \sup_{m \le t \le a} ||x(t) - y(t)|| \le d(x, y)$. This shows that d-convergence implies uniform convergence. Therefore, modifying the proof from [8], we can prove that every d-Cauchy sequence is d-convergent.

Let us denote:

by \mathfrak{X} — the generalized complete metric space of all continuous functions from [m, a] into E which are identically equal to the function φ on [m, 0], with the distance function d;

by C([m, a], E) — the space of all continuous function from [m, a] into E, with the usual supremum norm $\|\cdot\|$;

by \mathcal{F} — the set of continuous function f from $I \times E \times E$ into E satisfying the following conditions:

$$1^{\circ} \| z_0(t) - \varphi(0) - \int_0^t f(s, z_0(s), z_0(g(s))) ds \| = 0 (\lambda(t)) \text{ for every } 0 < t \le a,$$

where $z_0 \in \mathcal{X}$ is some function not depending on f,

2° there exist functions L_f , Q_f (which may depend on f) from I into $[0, +\infty]$ such that $||f(t, u, v) - f(t, u_1, v_1)|| \le L_f(t) \cdot ||u - u_1|| + Q_f(t) \cdot ||v - v_1||$ for every $0 < t \le a$ and u, v, u_1 , v_1 in E.

In the sequel, we shall deal with the set \mathcal{F} as an \mathcal{L}^* -space (see [7]) endowed with convergence: $\lim_{n\to\infty} f_n = f_0$ meaning

$$\sup \{ (\lambda(t))^{-1} \cdot || f_n(t, u, v) - f_0(t, u, v) || : \\ : 0 < t \le a, \ u \in \Omega_1, \ v \in \Omega_2 \} \to 0 \text{ as } n \to \infty$$

for all compacts Ω_1 , Ω_2 in E.

The equation (+) with the condition (++) is equivalent to the equation

(*)
$$x(t) = \begin{cases} \varphi(t) & \text{for } m \leq t \leq 0, \\ t \\ \varphi(0) + \int_{0}^{t} f(s, x(s), x(g(s))) ds & \text{for } t \in I. \end{cases}$$

The successive approximations of the solution of (*) on I are defined by

$$v_{j+1}(t) = \begin{cases} \varphi(t) & \text{for } m \leq t \leq 0, \\ \varphi(0) + \int_{0}^{t} f(s, v_{j}(s), v_{j}(g(s))) ds & \text{for } t \in I \end{cases}$$

$$(j=0, 1, ...),$$

where $f \in \mathcal{F}$ and v_0 is an arbitrary function in \mathfrak{X} such that $d(v_0, z_0) < \infty$. Let us put:

$$U_f(t) = \lambda(t) \cdot L_f(t), \quad V_f(t) = \tilde{\lambda}(g(t)) \cdot Q_f(t)$$

for $t \in I$. Now we shall prove

Theorem 1. Suppose that for $f \in \mathcal{F}$ the functions U_f , V_f are integrable on the interval I, and

$$k_f = \sup_{0 < t \le a} \frac{1}{\lambda(t)} \int_{0}^{t} (U_f(s) + V_f(s)) ds < 1.$$

Then, there exists the unique function $x_f \in \mathfrak{X}$ (given as the d-limit of successive approximations of the solution of (*)) satisfying the equation (+) on I and such that $d(x_f, z_0) < \infty$.

Assume, moreover, that each U_f , $V_f(f \in \mathcal{F})$ is integrable on I, and $\sup \{k_f : f \in \mathcal{F}\} < 1$. Then, the function $f \mapsto x_f$ maps continuously \mathcal{F} into \mathfrak{X} . Proof. Let $f_m \in \mathcal{F}$ for $m = 0, 1, \ldots$, and let $\lim_{n \to \infty} f_n = f_0$. We define the mappings $T_m (m=0, 1, ...)$ on \mathfrak{X} by the formula

$$(T_m x)(t) = \begin{cases} \varphi(t) & \text{for } m \leq t \leq 0, \\ \varphi(0) + \int_0^t f_m(s, x(s), x(g(s))) ds & \text{for } t \in I. \end{cases}$$

It is easy to verify that T_m maps $\mathfrak X$ into itself, and $d(z_0, T_n z_0) < \infty$ for each $n \ge 1$. We observe that if $x \in \mathfrak X$, then for $0 < t \le a$ and $n \ge 1$

$$d(T_{n}x, T_{0}x) \leq \sup_{0 < t \leq a} \frac{1}{\lambda(t)} \int_{0}^{t} \lambda(s) ds.$$

$$\cdot \sup_{0 < t \leq a} \frac{\|f_{n}(t, x(t), x(g(t))) - f_{0}(t, x(t), x(g(t)))\|}{\lambda(t)}$$

hence $d(T_n x, T_0 x) \rightarrow 0$ as $n \rightarrow \infty$.

Let us fix $0 < t \le a$, $n \ge 1$ and x, y in \mathfrak{X} . We have

$$||f_{n}(t, x(t), x(g(t))) - f_{n}(t, y(t), y(g(t)))|| \leq$$

$$\leq L_{f_{n}}(t) ||x(t) - y(t)|| + Q_{f_{n}}(t) ||x(g(t)) - y(g(t))|| \leq$$

$$\leq (U_{f_{n}}(t) + V_{f_{n}}(t)) \cdot d(x, y)$$

and hence, if $d(x, y) < \infty$, then $||(T_n x)(t) - (T_n y)(t)|| \le d(x, y) \cdot \int_{-\infty}^{t} (U_{f_n}(s) + t) d(s) d(s)$

 $+V_{f_n}(s)ds$. This implies, that $d(T_n x, T_n y) \leq k_{f_n} \cdot d(x, y)$ for $x, y \in \mathcal{X}$ with $d(x, y) < \infty$.

Consequently, by the Banach fixed-point type theorem given in Sec 1, there exists the unique function $x_m \in \mathcal{X}$ such that $(T_m x_m)(t) = x_m(t)(m = 0, 1, ...)$ for $m \le t \le a$, and moreover $d(x_n, x_0) \to 0$ as $n \to \infty$. This completes the proof.

To the above result the following remarks should be added:

1. Suppose that $|g(t)| \le t$ for every $t \in I$, and f is a bounded continuous function from $I \times E \times E$ into E such that

$$t \cdot || f(t, u, v) - f(t, u_1, v_1) || \leq K(||u - u_1|| + ||v - v_1||),$$

$$t^{\beta} \cdot || f(t, u, v) - f(t, u_1, v_1) || \leq L(||u - u_1||^{\alpha} + ||v - v_1||^{\alpha})$$

for $0 < t \le a$ and u, v, u_1 , v_1 in E, where K > 0, L > 0, α , β are constants. Let us put: $\tilde{\lambda}(t) = |t|^{pK}$ for $m \le t \le a$, $L_f(t) = Q_f(t) = t^{-1}K$ for $t \in I$, where p is some constant. If $0 < \alpha < 1$, $\beta < \alpha$, $2K(1-\alpha) < 1-\beta$, p > 2 and $pK(1-\alpha) < 1-\beta$, then for f the assumptions of the first part of Theorem 1 are satisfied.

Proof. Indeed, $\sup_{0 < t \le a} (\lambda(t))^{-1} \cdot \int_{0}^{t} \lambda(s) ds = (1 + pK)^{-1} \ a, \int_{0}^{a} U_{f}(t) \ dt = \\ = p^{-1} \cdot a^{pK}, \int_{0}^{a} V_{f}(t) dt \le K \cdot \int_{0}^{t} t^{pK-1} dt = p^{-1} \cdot a^{pK} \text{ and } k_{f} \le 2 K \cdot \sup_{0 < t \le a} t^{-pK} \int_{0}^{t} \times s^{pK-1} ds = 2 \cdot p^{-1} < 1. \text{ Modifying the proof from [8, p. 544] we can show, that there exists } z_{f} \in \mathcal{X} \text{ such that } \left\| z_{f}(t) - \varphi(0) - \int_{0}^{t} f(s, z_{f}(s), z_{f}(g(s))) ds \right\| = 0 \ (t^{pK}) \text{ for } 0 < t \le a, \text{ which completes the proof.}$

2. Suppose that $|g(t)| \le t$ for every $t \in I$, and f is a continuous function from $I \times E \times E$ into E such that $||f(t, u, v)|| \le M \cdot t^q$ for $(t, u, v) \in I \times E \times E$, $t \cdot ||f(t, u, v) - f(t, u_1, v_1)|| \le N(||u - u_1|| + ||v - v_1||)$ for $0 < t \le a$ and u, v, u_1, v_1 in E, where M > 0, N > 0 and q > -1 are constants. Let us put: $\tilde{\lambda}(t) = |t|^{q+1}$ for $m \le t \le a$, $L_f(t) = Q_f(t) = N \cdot t^{-1}$ for $t \in I$. If q > 2N - 1, then for f the assumptions of the first part of Theorem 1 are satisfied.

Proof. We have: $\sup_{0 < t \le a} (\lambda(t))^{-1} \int_0^t \lambda(s) \, ds = (q+2)^{-1} \cdot a$, $\int_0^a U_f(t) \, dt = (q+1)^{-1} \cdot N \cdot a^{q+1}$. Since $|g(t)| \le t$ for $t \in I$, then $\int_0^a V_f(t) \, dt \le N \cdot \int_0^a t^q \, dt = (q+1)^{-1} \cdot N \cdot a^{q+1}$. Hence $k_f \le 2N \cdot \sup_{0 < t \le a} t^{-(q+1)}$. $\int_0^t s^q \, ds = 2N \cdot (q+1)^{-1} < 1$. Let us put

$$z(t) = \begin{cases} \varphi(t) & \text{for } m \leq t \leq 0, \\ \varphi(0) + (q+1)^{-1} \cdot M \cdot t^{q+1} & \text{for } t \in I. \end{cases}$$

Then, $z \in \mathcal{X}$ and $\|z(t) - \varphi(0) - \int_{0}^{t} f(s, z(s), z(g(s))) ds\| = 0 (t^{q+1})$ for $0 < t \le a$.

3. Suppose that f is a continuous function from $I \times E \times E$ into E such that $||f(t, u, v) - f(t, u_1, v_1)|| \le Q(||u - u_1|| + ||v - v_1||)$ for $t \in I$ and u, v, u_1, v_1 in E. If C > 2Q and $\tilde{\lambda}(t) = \exp(C \cdot t)$ for $m \le t \le a$, then the assumptions of Theorem 1 are satisfied.

Proof. Indeed, $\sup_{t} (\lambda(t))^{-1} \int_{0}^{t} \lambda(s) ds \leqslant C^{-1}$, $\int_{0}^{a} U_{f}(s) ds < C^{-1} \cdot Q \cdot \exp(C \cdot a)$, $\int_{0}^{a} V_{f}(s) ds \leqslant Q \cdot \int_{0}^{a} \exp(C \cdot s) ds$ and $k_{f} \leqslant 2Q \cdot \sup_{t} \exp(-Ct) \int_{0}^{t} \exp(C \cdot s) ds \leqslant 2Q \cdot C^{-1} < 1$. This completes our proof.

¹¹ Publications de l'Institut Mathématique

From remark 3 it follows that our theorem is connected with Bielecki's method [1] of norm changing in the theory of differential equations. Using the above remarks we can obtain some corollaries from Theorem 1. In Sec. 3 we give a result of this sort in case 3.

3. Denote by $\mathcal H$ the set of all continuous functions f from $I \times E \times E$ into E such that $||f(t, u, v) - f(t, u_1, v_1)|| \le Q_f(||u - u_1|| + ||v - v_1||)$ for $t \in I$ and u, v, u_1, v_1 in E, where $Q_f \geqslant 0$ is a constant depending on f.

Assume that $C_0 = \sup\{Q_f: f \in \mathcal{H}\} < \infty$, C > 2 C_0 and $\tilde{\lambda}$ is as in the remark 3. Let us put $|||x|||_C = \sup\{\exp(-C \cdot t) \cdot ||x(t)|| : m \le t \le a\}$ for $x \in C([m, a], E)$. The norm is equivalent to the original norm $||| \cdot |||$, and $d(x, y) = |||x-y|||_C$ for functions x, y of C([m, a], E) which are equal identically to the function φ on [m, 0]. From Theorem 1 and remark 3 we obtain the following corollary:

Let the set $\mathcal H$ be considered as an $\mathcal L^*$ -space endowed with the almost uniform covergence. For an arbitrary $f\in\mathcal H$ there exists the unique function $x_f\in C([m,a],E)$ satisfying the equation (+) on I and such that $x_f(t)=\varphi(t)$ for $m\leqslant t\leqslant 0$, Moreover, if $\sup\{Q_f\colon f\in\mathcal H\}<\infty$ then the function $f\mapsto x_f$ maps continuously $\mathcal H$ into C([m,a],E).

In [2] there are proved some local theorems on the existence, uniqueness and continuous dependence on the given function of solution of the functional-differential equation in Euclidean space. The proofs of these results are based on a Nadler's theorem [10]. (The corresponding problem for the differential equation has been investigated in [10, p. 582].) We generalize the main results from [2]. Let us note that the remaining results from this paper can be analogously strengthened.

Denote by \mathcal{H}_0 the subset in \mathcal{H} consisting of uniformly bounded functions. The set \mathcal{H}_0 will be considered as an \mathcal{L}^* -space endowed with the pointwise convergence on $I \times E \times E$.

Theorem 2. For an arbitrary $f \in \mathcal{H}_0$ there exists the unique function $x_f \in C([m, a], E)$ (given as the uniform convergence limit of successive approximations of the solution of (*)) satisfying the equation (+) on I and such that $x_f(t) = \varphi(t)$ for $m \le t \le 0$. Moreover, if $\sup \{Q_f: f \in \mathcal{H}\} < \infty$ then the function $f \mapsto x_f$ maps continuously \mathcal{H}_0 into C([m, a], E).

Proof. Assume that $f_m \in \mathcal{H}_0$ (m=0, 1, ...) and C, $\tilde{\lambda}$, $\||\cdot||_C$ are as the proof of the above corollary, and T_m (m=0, 1, ...) are the mappings defined in the proof of Theorem 1.

Let us fix $x \in C([m, a], E)$ such that $x(t) = \varphi(t)$ for $m \le t \le 0$. The Lebesgue bounded convergence theorem*) implies that $\lim_{n \to \infty} \int_{0}^{t} f_n(s, x(s), t) ds$

^{*)} Since the limit fuction f_0 is continuous, so the integral can be understood as the Riemann integral [9] of the function defined on an interval I with values in the Banach space E.

$$x(g(s)) ds = \int_{0}^{t} f_0(s, x(s), x(g(s))) ds$$
 for $t \in I$. Hence, $\lim_{n \to \infty} ||(T_n x)(t) - (T_0 x)|| = 0$

for $m \le t \le a$. This implies, by the equicontinuity of sequence $(T_n x)$ on the compact [m, a], that the sequence $(T_n x)$ converges uniformly on [m, a] to $T_0 x$ as $n \to \infty$. Finally, $d(T_n x, T_0 x) \to 0$ as $n \to \infty$. The application of fixed-point type theorem (given in Sec. 1) completes the proof.

- 4. The above theorems can be formulated for systems of differential and integral-differential equations. We have the following examples:
- 1°. Let m denote the space of all bounded sequences of real numbers with the norm $||(x_1, x_2, \ldots)||_{\infty} = \sum_{i=1}^{\infty} 2^{-i} |x_i|$. A function F from $I \times m \times m$ into $(-\infty, \infty)$ is continuous at the point $P = (\overline{t}, (\overline{x_n}), (\overline{y_n})) \in I \times m \times m$ if and only if (comp. [11]) for every $\varepsilon > 0$ there exist a number $\eta > 0$ and natural numbers N', N'' such that $|F(t; x_1, x_2, \ldots; y_1, y_2, \ldots) F(\overline{t}; \overline{x_1}, \overline{x_2}, \ldots; \overline{y_1}, \overline{y_2}, \ldots)| < \varepsilon$, when $|t \overline{t}| < \eta$, $|x_i \overline{x_i}| < \eta$ for $i = 1, 2, \ldots, N'$ and $|y_i \overline{y_i}| < \eta$ for $j = 1, 2, \ldots, N''$.

Given a non-negative constant C, let m_C be the set of real sequences bounded by C. Then, evidently, the convergence in m_C is equivalent to the coordinate-wise convergence.

Suppose, that g is a continuous function such that $|g(t)| \le t$ for $t \in I$, and the functions $\varphi_n(n=1, 2, ...)$ from [m, 0] into $(-\infty, \infty)$ are continuous and uniformly bounded by A. Consider the infinite system of differential equations

$$x_n'(t) = F_n(t; x_1(t), x_2(t), \dots; x_1(g(t)), x_2(g(t)), \dots)$$

$$(n = 1, 2, \dots),$$

where $F_n(n=1, 2, ...)$ are given on $I \times m \times m$ continuous functions uniformly bounded by B.

Let us put:

$$C = A + (a+1) B$$
,
 $\varphi(t) = (\varphi_1(t), \varphi_2(t), ...)$ for $m \le t \le 0$,
 $f(t, x, y) = (F_1(t, x, y), F_2(t, x, y), ...)$ for $(t, x, y) \in I \times m \times m$.

Then, $\varphi:[m, 0] \to m_C$, $f: I \times m_C \times m_C \to m_C$ are continuous functions, and the above infinite system of differential equations with initial conditions

$$x_n(t) = \varphi_n(t) \quad (n = 1, 2, \ldots) \quad \text{for } m \leqslant t \leqslant 0$$

is equivalent to the problem of finding the solution of (+) satisfying the (++) in m_C .

By means of the application of Theorem 1 and remark 1 one can prove that the following theorem holds:

Suppose that there exist constants α , β , K, L, such that

$$t \cdot |F_n(t, x, y) - F_n(t, \overline{x}, \overline{y})| \leq K(||x - \overline{x}||_{\infty} + ||y - \overline{y}||_{\infty}),$$

$$t^{\beta} \cdot |F_n(t, x, y) - F_n(t, \overline{x}, \overline{y})| \leq L(||x - \overline{x}||_{\infty}^{\alpha} + ||y - \overline{y}||_{\infty}^{\alpha})$$

for every $n \ge 1$, $t \in I$ and x, y, x, y in m_C . If K > 0, L > 0, $0 < \alpha < 1$, $\beta < \alpha$ and $2K(1-\alpha) < 1-\beta$, then there exists the unique solution of the above initial-value problem; this solution consists of uniformly bounded continuous functions on the interval [m, a].

 2° . Let \mathbb{R}^n be an *n*-dimensional Euclidean space with the norm Π , Ω the compact subset of the finite dimensional space, and $C(\Omega, \mathbb{R}^n)$ the Banach space of continuous functions from Ω to \mathbb{R}^n . We consider the equation

$$\frac{\partial z(t, \tau)}{\partial t} = \int_{\Omega} G[t, \tau, \sigma, z(t, \sigma), z(g(t), \sigma)] d\sigma$$

regarded as an ordinary differential equation in the space $C(\Omega, \mathbb{R}^n)$.

Denote:
$$\varphi = (\varphi_1, \ldots, \varphi_n), G = (G_1, \ldots, G_n).$$

Suppose that φ from [m, 0] into $C(\Omega, \mathbb{R}^n)$ and G from $I \times \Omega \times \Omega \times \mathbb{R}^n \times \mathbb{R}^n$ into \mathbb{R}^n are given continuous functions, and $|G_i(t, \tau, \sigma, x, y) - G_i(t, \tau, \sigma, x, y)| \le L(|x-x| + |y-y|)$ (i=1, 2, ..., n) for every $t \in I$, $\tau \in \Omega$, $\sigma \in \Omega$ and x, y, x, y in \mathbb{R}^n .

Then, using Theorem 1 and remark 3 we obtain the following theorem:

There exists one and only one system $(z_1, z_2, \ldots z_n)$ consisting of continuous on $[m, a] \times \Omega$ functions z_i $(i = 1, 2, \ldots, n)$ such that

$$\frac{\partial z_i(t, \tau)}{\partial_t} = \int_{\Omega} G_i[t, \tau, \sigma, z_1(t, \sigma), \dots, z_n(t, \sigma), z_1(g(t), \sigma), \dots, z_n(g(t), \sigma)] d\sigma$$

for
$$(t, \tau) \in I \times \Omega$$
, and $z_i(t, \tau) = \varphi_i(t)(\tau)$ for $(t, \tau) \in [m, 0] \times \Omega$.

5. The Darboux problem for hyperbolic differential equation $z_{xy} = f(x, y, z)$ is the two-dimensional analog of the Cauchy problem for an equation z' = f(t, z). Therefore, the results presented in this paper can also be obtained for equation $z_{xy} = f(x, y, z, z_x, z_y)$.

Moreover les us denote that results similar to ours hold for the continuous functions satisfying the conditions of Kooi type [3]:

$$|f(t, u)| \leq M \cdot t^p, t^s |f(t, u) - f(t, v)| \leq L |u - v|^r$$

for $0 < t \le a$ and $-\infty < u$, $v < \infty$, where M > 0, L > 0, p > -1, $r \ge 1$ and s are constants such that r(1+p)-s=p, $(2M)^{r-1}L < (1+p)^r$. We can prove this in the same way as above, using instead of Banach fixed-point type theorem (given in Sec. 1) the following theorem:

Let (X,d) be a generalized complete metric space, let T_0 and $T_n(n=1,2,\ldots)$ be mappings of X into itself such that $\lim_{n\to\infty} d(T_nx, T_0x)=0$ for all x in X. Suppose that there exist constants $\varepsilon>0$, $0\leqslant k<1$ and an element z_0 in X such that $d(z_0, T_nz_0)\leqslant \varepsilon$ for $n\geqslant 1$, and $d(T_nxT_ny)\leqslant k\cdot d(x,y)$ for $n\geqslant 1$ and $x,y\in X$ with $d(x,y)\leqslant \varepsilon$. Then the equation $T_mx=x$ ($m=0,1,\ldots$) has one and only one solution $u_m\in X$ such that there exists a finite sequence $x_0=z_0, x_1,\ldots,x_k=u_m$ with $d(x_{i-1},x_i)\leqslant \varepsilon$ for $1\leqslant i\leqslant k$, and $d(u_n,u_0)\to 0$ as $n\to\infty$.

REFERENCES

- [1] A. Bielecki, Une remarque sur la méthode de Banach-Cacciopoli-Tikhonov dans la théorie des équations différentielles ordinaires, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 4 (1956), p. 261—264.
- [2] S. Czerwik, On some functional-differential equations, Publ. Inst. Math. 20 (19.6), p. 67—71.
- [3] O. Kooi, Existentie-, eenduidigheids- en convergrntie stellingen in de theore der gewone diffferentiaal vergelijkingen, Thesis V. U., Amsterdam 1956.
- [4] O. Kooi, The method of successive approximations and a uniqueness theorem of Krasnoselskii and Krein in the theory of differential equations, Indag. Math. 20 (1958), p. 322-327.
- [5] M. A. Krasnoselskiî and S. G. Krein, On a class of uniqueness theorem for the equation y' = f(t, y) [in Russian], Uspehi Mat. Nauk 11 (1956), p. 209—213.
- [6] I. Kubiaczyk and B. Rzepecki, Some variants of Banach fixed point theorem and applications to differential equations, Discussiones Math. 3 [to appear].
 - [7] K. Kuratowski, Topologie v. I, Warszawa 1958.
- [8] W. A. J Luxemburg, On the convergence of successive approximations in the theory of ordinary differential equations II, Indag Math. 20 (1958), p. 540-546.
 - [9] K. Maurin, Analysis. Part I. Elements, Warszawa 1976.
- [10] S. B. Nadler, Jr., Sequences of contractions and fixed points, Pacific J. Math. 27 (1968), p. 579—585.
- [11] B. Rzepecki, On infinite systems of differential equations with deviated argument I, Ann. Polon. Math 31 (1975), p. 159—169.

Institute of Mathematics A. Mickiewicz University, Matejki 48/49, Poznań, POLAND

or:

Osiedle Boh. II Wojny Swiatowej 43/13 61-385 Poznań (POLAND)