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In this paper we present results on the existence, uniqueness and conti-
nuous dependence on given functions of a solution for the Cauchy problem
with retarded argument. These facts follow as a consequence of some appli-
cations of the “generalized metric space” (not every two points have necessa-
rily finite distance) (see Luxemburg [8]).

Assumptions (i), (ii)) and (iii), given below, are valid throughout this
paper and will not be repeated in the formulations of particular theorems.

Suppose that:
(i) I=]0, d], E is a Banach space with the norm ||-|[;

(ii) the function g: I— (— o0, o) is continuous and g ()<t for every
tcl, and let m=min{g (¢):tcI};

(iii) the function ¢:[m, 0] -E is continuous, and the function A:[m, a]
> (— o0, ) satisfies the following conditions: A (#)>0 for every ¢+#0, A=2|,

is a bounded function on I, and sup {()\ (t))"-f‘l(s) ds: 0<t<a}<oo.
We shall consider the problem of findingo the solution of the equation
(+) X@O=1@ x@), x@®)
satisfying the initial condition
(++) x@)=9(@) for m<r<0,

where x denotes an unknown function, g, ¢ and f from Ix Ex E into E are
given continuous functions.

1. O. Kooi [4] (comp. [8]) has proved the uniqueness of a solution of
the Cauchy problem for an equation x’'= f(¢, x) and the uniform convergence
of sequence of successive approximations for this problem to this unique so-
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lution, when continuous bounded function f had satisfied the following con-
ditions:

1S =S V| <Klu—v], [t W~ £t V)| <L|u-v[

for 0<t<a and — oo <u, v<oo, where XK>0, L>0, «,  are constants such
that 0<a<l1, B<«, K(l1-a)<<l—B. (For B=0 we obtain conditions for
the uniqueness of M. A. Krasnoselskil and I. G. Krein [5].)

We generalize the result of Kooi, applying the theorem on contraction
in a generalized metric space [8].

A generalized metric space (X, d) is a pair composed of a non-empty
set X and a distance function d:X x X —[0, -+ o] satisfying the usual axioms for
a metric space. If further: every d-Cauchy sequence in X is d-convergent (i.e.,

lim d(x,, x,)=0 for a sequence (x,) in X, implies the existence of an ele-
P, g—>%

ment x, in X such that lim d(x,, x,)=0), then X is called a generalized com-

n—-oc

plete metric space.

Our results are proved by the following theorem of the type of Banach
fixed-point principle [6]:

Let (X, d) be a generalized complete metric space, let T, and T,(n=
=1, 2, ...) be mappings of X into itself such that lim d(T,x, Tyx)=0 for
all x in X. Suppose, that there exist an element z,—X and a constant Kk,
0<k<]1, such that d (z,, T,z))<oo (n=1,2,...)and d(T,x, T,y)<k-d(x, )
(n=1, 2,..) for all x, yEX with d(x, y)<<oo. Then, the equation T, x=Xx
(m=0, 1,...) has one and only one solution u, =X such that d(u,, z,)<o©
and d (u,, u,)—>0 as n—co. Moreover, every sequence of successive approxima-

tions xf,'") =T, xf,"l)1 (n=1, 2,...), where d (xg"), z)< o, is d-convergent to this

unique solution u,,.

2. For all continuous functions x, y from [m, a] into E, which are
identically equal to the function ¢ on an interval [m, 0], we define the follo-
wing distance function:

d(x, y)=sup {( (O) || x () -y ()| :0<t<a}.

We have ( sup A(¢))~'- sup [|x(t)~» () ||<d(x, ). This shows that
<<

s

0<t<a m<t<a
d-convergence implies uniform convergence. Therefore, modifying the proof
from [8], we can prove that every d-Cauchy sequence is d-convergent.

Let us denote:

by ¥ — the generalized complete metric space of all continuous func-
tions from [m, a] into E which are identically equal to the function ¢ on
[m, 0], with the distance function d;

by C({m, a], E) — the space of all continuous function from [m, a]
into E, with the usual supremum norm |||-[||;
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by .7 — the set of continuous function f from I x Ex E into E satisfying
the following conditions:

I |20 =2 ©) =[£G (), 2 (@) ds|=00.@) for every 0<i<a,
0

where z,&X is some function not depending on f,

2° there exist functions L;, O, (which may depend on f) from I into
[0, + o] such that |[f(z, u, v)— f(t, u;, v)|[<L;(t)- || u—u, | + Q) |v—v, |l
for every 0<t<{a and u, v, u,, v, in E.

In the sequel, we shall deal with the set .% as an _P*-space (see [TD
endowed with convergence: lim f, = f, meaning

n—w

Sup{o\(t))_l']‘!fn(t: u, V)-*f},(t, u, V)“:
0<t<a, ucE, vEQ,} -0 as n—>ow

for all compacts Q,, Q, in E.
The equation (+) with the condition (+ +) is equivalent to the equation

(1) for m<#<0,
* x(1)= g
cp(0)+ff(s, x(8), x(g(s))) ds for t<1.
0
The successive approximations of the solution of (*) on I are defined by

¢ (1) for m<t<0,

Vi ()= !
PO) + [f (s, v; (), v (g(®)ds for t&]
0
(j=0’ 1: . '),
wheie f&.F and v, is an arbitrary function in % such that d (Vos Zg)<<oo.
Let us put:

Ur)=2()-Li (1), V,(t)=A(g (1)) O, (1)
for t&1. Now we shall prove

Theorem 1. Suppose that for f&,F the functions Uy, V; are integrable
on the interval I, and

t
1
kp= sup —— | (U(s)+ V(s)ds<1.
e Foved KO0
0

Then, there exists the unique function x,cX (given as the d-limit of successive
approximations of the solution of (*)) satisfying the equation (+) on I and such
that d(x;, z,)<<co.
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Assume, moreover, that each Us, Vi(fEF ) is integrable on I, and
sup {k;: fEF }<l. Then, the function fi> Xy maps continuously ¥ into ¥.

Proof. Let f,,& 5 for m=0, 1,..., and let lim fo=fy. We define
the mappings 7,(m=0,1,...) on % by the formula e
@ () for m< <0,
(T,x) ()= ¢
<p(0)+ff,,,(s, x(s), x(g(s))ds for tc1.
0

It is easy to verify that T, maps X into itself, and d(z,, T,z))< o for
each n>1. We observe that if x&¥%, then for 0<t<a and n>1

O0<t<a

t
1
d(T,x, T,x)< sup —— | A (s)ds.
(T, x, T,0)< pw)f()
0

Csup 6 X@ XN £, x(@), x @)
0<t<a AQ)
hence d(T,x, T,x)—>0 as n—oo.
Let us fix 0<t<a, n>1 and x, y in ¥. We have

1falt x(®), x@@EON - £o(t, ¥ (@), yEemyl<
<L OxO-y O+ 2O x €@ -y @E)|<
SWn O+ V5 @) -d(x, y)
and hence, if d(x, y)<oo, then ||(T,x) O -T,»®]<d(x, y)-f‘(Uf,l )+
0

+ Vs (s))ds. This implies, that d(T,x,
d(x, y)<oo.

Consequently, by the Banach fixed-point type theorem given in Sec I,
there exists the unique function x,, =% such that T Xm) @) =%, () (m=0,1,...)
for m<t<a, and moreover d(x,, %)—>0 as n—oo. This completes the proof.

To the above result the following remarks should be added:

Tay)<kp-d(x, y) for x, y=X with

1. Suppose that g (t)| <t for every tcI, and S is a bounded continuous
Sfunction from Ix Ex E into E such that

CALE w =t us WISKE(lu—u, || +]v—v, |},
AR AU ES TR ATIES A PR P )

Jor 0<t<a and u, v, U, vy in E, where K>0, L>0, «, B are constants. Let

us put: i(t)=[t|l”‘ Jor m<i<a, L(t)=Q,(t)=t~"K for t=1, where P is some
constant. If O0<a<l, B<a, 2K{(1-o)<l =B, p>2 and pK(1l-wu)<1-8,
then for f the assumptions of the first part of Theorem 1 are satisfied.
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t a
Proof. Indeed, sup (A())~!-[ A(s)ds=(1+pK)~! q, fU (t) dt=
O<t<a (‘)l 0 f
a a t
=p~1.arkK, fo(t)dth-fﬂ’K‘ldt=p‘1- a?* and k,<2K- sup t‘Pfo
o . 0 O<t<<a °

sPK-1ds—2.p~1<c 1. Modifying the proof from [8, p. 544] we can show, that

t

there exists z,&X such that H Z, (1) —9(0)— f F (55 2:(5), z,(g (5))) ds H =0 (t7%)
0

for 0<t<a, which completes the proof.

2. Suppose that |g(t)|<t for every t&1, and f is a continuous function
from IxExE into E such that || f(t, u, v)||<M-12 for (¢, u, VEIXEXE,
t I f (& w, )= F @ u, W SNu—u || +][v—v,[]) for 0<t<a and u, v,

u,, v, in E, where M>0, N>0 and q> — 1 are constants. Let us put: A (t)=

=|t]|e*! for m<t<a, Ly()=Q,(t)=N-t=" for tcl If ¢g>2N—1, then for f
the assumptions of the first part of Theorem 1 are satisfied.

t a
Proof. We have: sup (1(:))—1f A@S)ds=(g+2) ! a, fo(z) dt =
0<t<a ° 0

=(g+1)7'-N.a?*!, Since |g(t)|<t for t£l, then fo(t)dt<N-ft‘1 dt =
0 0

=(g+1)"'-N.a?+'. Hence k,<2N- sup ¢~(a+D,

t
-fs‘l ds=2N (g+ D 1< 1.
0<t<Ca 0
Let us put

2(t)= ¢ (1) for m<1<0,
[<P(0)+(q+1)—1-M-tq+1 for 11

Then, zEX and Hz(t)—cp(O)—ff(s, z(s), z(g()) dsH=0(tq+1) for 0<t<a
0

3. Suppose that f is a continuous function from Ix Ex E into E such that
Hf(ts u, V)—-f(t, ul’ V_1)H<Q(Hu—ul H+HV—V1 H) for tEI and u, v, ul’ vl

in E.If C>2Q and n(t)=exp(C-t) for m<t<a, then the assumptions of
Theorem 1 are satisfied.

t a
Proof. Indeed, sup (A(#)~! fx(s) ds<C!, fo(s)ds<C"1-Q-exp
t 0 0

a a t
(C-a), fo(s) dng-fexp(C-s) ds and k,<2 Q-sup exp(—Ct)fexp(C-s)ds<
0 0 f 0

<20 -C'<l1. This completes our proof.
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From remark 3 it follows that our theorem is connected with Bielecki’s
method [i] of norm changing in the theory of differential equations. Using
the above remarks we can obtain some corollaries from Theorem 1. In Sec.
3 we give a result of this sort in case 3.

3. Denote by &% the set of all continuous functions 'f from Ix Ex E
into E such that [[f(t, u, V)= f(t u, v)|<Q(Jlu—u|[+|v—v,|) for
tcl and u, v, u,, v, in E, where Q,>0 is a constant depending on f.

Assume that Cy=sup{Q;: fEH}<oo, C>2C, and A is as in the re-
mark 3. Let us put [|x[lc=sup{exp(—C-1)-[|x(t)|:m<r<a} for x&
€C([m, a], E). The norm is equivalent to the original norm ||| |||, and d (x, y) =
=|[|x—y||c for functions x, y of C([m, a], E) which are equal identically to
the function ¢ on [m, 0]. From Theorem 1 and remark 3 we obtain the fol-
lowing corollary:

Let the set J6 be considered as an _F*-space endowed with the almost
uniform covergence. For an arbitrary f&J6 there exists the unique function
x,&C([m, al, E) satisfying the equation (+) on I and such that x,(1)=¢(t)
Jor m<t<<0, Moreover, if sup{Q;: f&YG}<<co then the function f>x; maps
continuously 6 into C([m, d], E).

In [2] there are proved some local theorems on the existence, uniqueness
and continuous dependence on the given function of solution of the functio-
nal-differential equation in Euclidean space. The proofs of these results are
based on a Nadler’s theorem [10]. (The corresponding problem for the diffe-
rential equation has been investigated in [10, p. 582].) We generalize the main
results from [2]. Let us note that the remaining results from this paper can
be analogously strengthened.

Denote by %%, the subset in &% consisting of uniformly bounded functions.
The set &6, will be considered as an _#*-space endowed with the pointwise
convergence on I x ExE.

Theorem 2. For an arbitrary f&J6, there exists the unique function
x,C([m, a], E) (given as the uniform convergence limit of successive approxi-
mations of the solution of (*)) satisfying the equation (+) on I and such that
X, (1) =0 (1) for m<t<0. Moreover, if sup{Q,.f EF6}<<co then the function
S x; maps continuously J6, into C([m, a], E).

Proof. Assume that f,,EJ6,(m=0, 1,...) and C, &, |||-|||c are as the
proof of the above corollary, and T, (m=0, 1,...) are the mappings defined
in the proof of Theorem 1.

Let us fix x&C([m, a], E) such that x(f)=¢(t) for m<t<0. The

t
Lebesgue bounded convergence theorem® implies that lim f Jn (s, x(5),
0

n—o

*) Since the limit fuction f, is continuous, so the integral can be understood as the
Riemann integral [9] of the function defined on an interval I with values in the Banach
space E.
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n—r o

x(g (s)))ds=jf0 (s, x(s5), x(g(s)))ds for t1. Hence, lim (T x) () = (Tyx)|| =0
0

for m<{t<{a. This implies, by the equicontinuity of sequence (7,x) on the
compact [m, a], that the sequence (T,x) converges uniformly on [m, a] to Tyx
as n—>oo. Finally, d(T, x, T,x)—0 as n—>co. The application of fixed-point
type theorem (given in Sec. 1) completes the proof.

4. The above theorems can be formulated for systems of differential
and integral-differential equations. We have the following examples:

1°. Let m denote the space of all bounded sequences of real numbers
with the norm || (x,, X,, ...)|[e=21 27%|x;]. A function F from Ixmxm

into (— o0, o0) is continuous at the point P=(t, ), G)NEIxmxm if and
only if (comp. [11]) for every e>0 there exist a number %>0 and na-
tural numbers N’, N such that |F(t; x,, X,, ...} Vi» Vs ...)—F(t—; ;1,
Xys ooei Vis Var o-0)|<e, when [t—t|<m, |x,—x|<vm for i=1, 2,..., N’
and |y,—y,|<% for j=1, 2,..., N". '

Given a non-negative constant C, let m. be the set of real sequences
bounded by C. Then, evidently, the convergence in m. is equivalent to the
coordinate-wise convergence.

Suppose, that g is a continuous function such that |g(¢)|<t for t&l,
and the functions ¢@,(n=1, 2, ...) from [m, 0] into (— oo, c©) are continuous
and uniformly bounded by A. Consider the infinite system of differential
equations

xnl ®=F,(@1 x ), x, (D, ...5 x (g (), x, c@®,..)
n=1, 2,..)),

where F,(n=1, 2,...) are given on I xmx m continuous functions uniformly
bounded by B.

Let us put:

C=A+(a+1)B,

() =(p, (1), ¢, (1), ...) for m<1<0,

f x, =F, @ x, »), F, (&, x, y),...) for (¢, x, SIxmxm.

Then, ¢:[m, 0)—>mg, f:Ixmex mc— me are continuous functions, and the
above infinite system of differential equations with initial conditions

X, ()=0,() (n=1, 2,..)) for m<t<0

is equivalent to the problem of finding the solution of (+) satisfying the (+ +)
in mg.

By means of the application of Theorem 1 and remark 1 one can prove
that the following theorem holds:

11*
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Suppose that there exist constants «, B, K, L, such that
I-IF"(I, X, y)_Fn(t’ ;r .;” <K(HX—3‘-”°°+“J’—JTHm):
Bt x, Y)=Fo(t, x, WLl x=%||%+[y— %)

Jor every n>=1, t&I and x, y, x, y in mg. If K>0, L>0, 0<a<l, B<a
and 2K (1 —a)<<1—P, then there exists the unique solution of the above initial-
-value problem; this solution consists of uniformly bounded continuous functions on
the interval [m, a].

2°. Let R* be an n-dimensional Euclidean space with the norm ]|, Q
the compact subset of the finite dimensional space, and C(Q, R”) the Banach
space of continuous functions from Q to R”. We consider the equation

azg’t 1-)—=/‘G[t, T, 6, Z(t, ©), z(g(1), o)]ldo
Q

regarded as an ordinary differential equation in the space C(Q, R”).

Denote: ¢=(¢;, ..., @,), G=(G,, ..., G,).

Suppose that ¢ from [m, 0] into C(Q, R”) and G from I x Q x Q x R* x R”
into R” are given continuous functions, and |G(t, 7, o, x, »)—G;(t, ©, o,
X MISL(|x=x|+)y-»]) (=1, 2,..., n) for every tcI, 1€Q, ccQ
and x, y, x, y in R".

Then, using Theorem 1 and remark 3 we obtain the following theorem:

There exists one and only one system (z,, z,, ... z,) consisting of conti-
nuous on [m, alx Q functions z; (i=1, 2,..., n) such that

ai(()t’—i)=f6i[t, T, 6, z,(t, 0), ..., Z,(1, ),
t
Q

z,(g(®, o), ..., Z,(g (1), o)]ldo
Jor (t, ©)EIxQ, and z;(t, ©)=q,(t) (v) for (t, ©)&[m, 0] x Q.

5. The Darboux problem for hyperbolic differential equation Zy=f(x,,2)
1s the two-dimensional analog of the Cauchy problem for an equation z’ = f(t, z).
Therefore, the results presented in this paper can also be obtained for equation
Zy=f (X ¥ 2, z4, Z,).

Moreover les us denote that results similar to ours hold for the conti-
nuous functions satisfying the conditions of Kooi type [3]:

£ D) |<M-12, ]t w)— (¢ v)|<L|u—v]

for 0<t<{a and - oo <u, v<oo, where M>0, L>0, p>—1, r>1 and s
-are constants such that r(l4p)—s=p, QM)Y-'L<(1+p). We can prove
this in the same way as above, using instead of Banach fixed-point type theo-
rem (given in Sec. 1) the following theorem:
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Let (X, d) be a generalized complete metric space, let T, and T, (n=1,2, ...)
be mappings of X into itself such that m d(T,x, T,x)=0 for all x in X.

n—- o
Suppose that there exist constants €>0, 0<k<1 and an element z, in X such
that d(z,, T,zy)<e for nz1,and d(T,x T, y)<k-d(x,y) forn=1and x, yc X
with d (x, y)<e. Then the equation T,x=x(m=0, 1,...) has one and only
one solution u,, & X such that there exists a finite sequence xo =2y, X{5 ... , Xp=1Up
with d(x;_,, x)<ce for 1<i<k, and d(u,, u))—0 as n—co.
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