THEOREMS ON NONLINEAR SUPERPOSITIONS, III: ORDINARY DIFFERENTIAL EQUATIONS

Vlajko Lj. Kocić

(Received October 12, 1977)

0. In [1] S. E. Jones and W. F. Ames introduced the concept of nonlinear superposition for ordinary and partial differential equations:

Denote by S(E) the set of all solutions of differential equation (E). If

$$u_1, \ldots, u_m \in S(E)$$
 implies $F(u_1, \ldots, u_m) \in S(E)$,

then the function F is called "connecting function" for (E). It defines a nonlinear superposition for (E).

In a number of papers ([1]—[7]) nonlinear superposition for partial differential equations were investigated.

M. N. Spijker [8] considered a class of ordinary differential equations for which linear superposition is the only kind of superposition which is possible.

In section 1, applying a similar method as in [7], we shall prove the theorem 1.1 which gives sufficient and necessary conditions such that F(u, v, x) is connecting function for equation

$$(\mathbf{E}_1) \qquad \qquad y'' = f(y', y, x)$$

(f is differentiable function of order 3).

In section 2 we shall formulate an analogous theorem for ordinary differential equations of order $n(n \ge 2)$.

Some remarks and examples are given in sections 3 and 4.

Remark 0.1. We consider equation (E_1) instead the general equation $\Phi(y'', y', y, x) = 0$ for technical reasons. Similar conclusions can be obtained for this equation.

In further text ψ_i denotes the partial derivative with respect to *i*-th variable of ψ and $\psi_{ij} = (\psi_i)_j$.

- 1. Theorem 1.1. A twice differentiable function F(u, v, x) is connecting function for equation (E_1) if and only if:
 - (i) equation (E_1) has the form

(E₂)
$$a_1(x) (g_y(y, x)y'' + g_{yy}(y, x) (y')^2 + 2g_{yx}(y, x)y' + g_{xx}(y, x))$$

 $+ 2a_2(x) (g_y(y, x)y' + g_x(y, x)) + a_3(x)g(y, x) = 0$

 $(a_1, a_2, a_3 \text{ are functions of } x, g \text{ is a twice differentiable function}).$ In this case

(1.1)
$$F(u, v, x) = h((C_1 g(u, x) + C_2 g(v, x)), x)$$

where C_1 , C_2 are arbitrary constants and the solution with respect to s of the equation

$$(1.2) g(s, x) = r$$

is given by

$$(1.3) s = h(r, x);$$

or

(ii) equation (E_1) is of the form

(E₃)
$$a_1(x) (g_y(y, x)y'' + g_{yy}(y, x) (y')^2 + 2g_{yx}(y, x)y' + g_{xx}(y, x))$$

 $+ 2a_2(x) (g_y(y, x)y' + g_x(y, x)) + a_3(x)g(y, x) + a_4(x) = 0$

 $(a_1, \ldots, a_4 \text{ are function of } x, g \text{ is twice differentiable function}).$ In this case

(1.4)
$$F(u, v, x) = h((C_1 g(u, x) + (1 - C_1) g(v, x)), x)$$

 $(C_1 \text{ is arbitrary constant}).$

Proof. 1°. Sufficient conditions. Let $u, v \in S(E_2)$. Then from (1.1) it follows $g(F, x) = C_1 g(u, x) + C_2 g(v, x)$. Using this, it easy to check that F is also a solution of (E_2) .

Similarly we can prove that, if condition (ii) is fulfilled, then F, given by (1.4), is a connecting function for (E_3) and the first part of the theorem is proved.

2° Necessary conditions. Let $u, v \in S(E_1)$ and let $F(u, v, x) \in S(E_1)$. Then we have

(1.5)
$$F_{u}f(u', u, x) + F_{v}f(v', v, x) + F_{uu}(u')^{2} + 2F_{uv}u'v' + F_{vv}(v')^{2} + 2(F_{ux}u' + F_{vx}v') + F_{xx} = f(F_{u}u' + F_{v}v' + F_{x}, F, x).$$

Differentiating (1.5) twice with respect to u' and v' we find $f_{111}\left(\frac{dF}{dx}, F, x\right) = 0$ which means that f has the form

(1.6)
$$f(t, s, x) = A(s, x) t^2 + B(s, x) t + C(s, x)$$

(A, B, C are functions of s, x).

Substituting (1.6) into (1.5) we find:

$$A(F, x) = \frac{F_{uv}}{F_u F_v},$$

(1.8)
$$F_p A(p, x) + F_{pp} = A(F, x) (F_p)^2,$$

(1.9)
$$F_{p}B(p, x) + F_{px} = A(F, x)F_{p}F_{x} + B(F, x)F_{p},$$

$$(1.10) F_u C(u, x) + F_v C(u, x) + F_{xx} = A(F, x) (F_x)^2 + 2B(F, x) F_x + C(F, x)$$

where $p \in \{u, v\}$.

Furthermore, let

(1.11)
$$A(s, x) = -\frac{G_{ss}(s, x)}{G_{s}(s, x)}$$

where $G(s,x) = \alpha_1(x) \int \exp(-\int A(s, x) ds) ds + \alpha_2(x) (\alpha_1, \alpha_2)$ are functions of x).

From (1.7) it follows $(G(F, x))_{uv} = 0$ and we have $G(F, x) = \varphi(u, x) + \psi(v, x)$, $(\varphi \text{ and } \psi \text{ are arbitrary functions in } u, x \text{ and } v, x \text{ respectively})$. Furthermore, from (1.8) we obtain that φ and ψ have the form $\varphi(u, x) = K_u(x) (G(u, x) - L(x))$, $\psi(v, x) = K_v(x) (G(v, x) - L(x))$, where K_u, K_v, L are arbitrary functions of x.

After substitution

(1.12)
$$g(s, x) = G(s, x) - L(x)$$

we find

(1.13)
$$g(F, x) = K_{u}(x)g(u, x) + K_{v}(x)g(v, x).$$

Then (1.11) becomes

(1.14)
$$A(s, x) = -\frac{g_{ss}(s, x)}{g_{s}(s, x)}.$$

Differentiating (1.13) with respect to p and x ($p \in \{u, v\}$) and using (1.9)

we find
$$B(F, x) + \frac{g_{Fx}(F, x)}{g_F(F, x)} = B(p, x) + \frac{g_{px}(p, x)}{g_p(p, x)} + \frac{K'_p(x)}{K_p(x)}$$
.

After substitution $B(s, x) = -\frac{H_{sx}(s, x)}{H_{s}(s, x)}$, we obtain

(1.15)
$$\frac{\partial}{\partial x} \left(\log \left(\frac{g_F(F, x)}{H_F(F, x)} \right) \right) = \frac{\partial}{\partial x} \left(\log \left(\frac{g_P(P, x)}{H_P(P, x)} K_P(x) \right) \right),$$

where $p \in \{u, v\}$. From the above it follows

(1.16)
$$\frac{\partial}{\partial x} \left(\log \left(\frac{g_s(s, x)}{H_s(s, x)} \right) \right) = -\frac{a_2(x)}{a_1(x)},$$

where a_1 , a_2 are functions of x.

From (1.15) and (1.16) it follows $K_{\mu}(x) = C_1$, $K_{\nu}(x) = C_2$ (C_1 , C_2 are arbitrary constants) and

(1.17)
$$g(F, x) = C_1 g(u, x) + C_2 g(v, x).$$

Also we have

(1.18)
$$B(s, x) = -\frac{g_{sx}(s, x)}{g_s(s, x)} - \frac{a_2(x)}{a_1(x)}.$$

Using (1.14), (1.17), (1.18) we find that (1.10) becomes

$$F_{u}\left(C(u, x) + \frac{g_{xx}(u, x)}{g_{x}(u, x)} + 2\frac{a_{2}}{a_{1}}\frac{g_{x}(u, x)}{g_{u}(u, x)}\right) + F_{v}\left(C(v, x) + \frac{g_{xx}(v, x)}{g_{v}(v, x)} + 2\frac{a_{2}}{a_{1}}\frac{g_{x}(v, x)}{g_{v}(v, x)}\right)$$

$$= C(F, x) + \frac{g_{FF}(F, x)}{g_{F}(F, x)} + 2\frac{a_{2}}{a_{1}}\frac{g_{F}(F, x)}{g_{F}(F, x)}.$$

After substitution

(1.19)
$$C(s, x) = \frac{g_{xx}(s, x)}{g_u(s, x)} + 2\frac{a_2}{a_1} \frac{g_x(s, x)}{g_s(s, x)} = D(s, x)$$

we get

(1.20)
$$F_{u} D(u, x) + F_{v} D(v, x) = D(F, x).$$

Differentiating (1.20) with respect to u and v and using (1.7), (1.8), (1.14) we find

$$(1.21) D_F(F, x) + D(F, x) \frac{g_{FF}(F, x)}{g_F(F, x)} = D_p(p, x) + D(p, x) \frac{g_{pp}(p, x)}{g_p(p, x)} = -\frac{a_3(x)}{a_1(x)}$$

where $p \in \{u, v\}$ and a_3 is a function of x.

Then we have

(1.22)
$$D(s, x) = -\frac{a_3(x) g(s, x) + a_4(x)}{a_1(x) g_s(s, x)}$$

where a_4 is a function of x.

From (1.19) and (1.22) we find

$$(1.23) C(s,x) = -\frac{a_1(x)g_{xx}(s,x) + 2a_2(x)g_x(s,x) + a_3(x)g(s,x) + a_4(x)}{a_1(x)g_s(s,x)}.$$

Furthermore, from (1.17), (1.20), (1.22) it follows that the following condition must be satisfied

(1.24)
$$(C_1 + C_2 - 1) a_4(x) = 0.$$

The following two cases are possible:

 1° $C_1 + C_2 \neq 1$. Then $a_4(x) = 0$ and from (1.17) it follows that F is of the form (1.1). Also, from (1.6), (1.14), (1.18), (1.23) we conclude that equation (E_1) has the form (E_2) .

 2° $C_1 + C_2 = 1$. Then from (1.17) we find that F is of the form (1.4). Also, from (1.6), (1.14), (1.18), (1,23) it follows that equation (E_1) has the form (E_3) .

This proves the theorem.

2. In this section we shall formulate a theorem analogous to Theorem 1.1 for ordinary differential equations of order n.

Theorem 2.1. A differentiable function of order, $F(u_1, \ldots, u_m, x)$ $(m \le n)$ is a connecting function for the equation

$$(E_4) y^{(n)} = \Phi(y^{(n-1)}, \ldots, y', y, x)$$

 $(n \ge 2)$ if and only if one of the following two conditions is satisfied:

(i) equation (E_4) is of the form

(E₅)
$$a_0(x) \frac{d^n g(y, x)}{dx^n} + \cdots + a_{n-1}(x) \frac{dg(y, x)}{dx} + a_n(x) g(y, x) = 0,$$

 $(a_0, \ldots, a_n \text{ are functions of } x, g \text{ is differentiable function of order } n)$. Then F has the form

$$(2.1) F(u_1, \ldots, u_m, x) = h((C_1 g(u_1, x) + \cdots + C_m g(u_m, x)), x)$$

where C_1, \ldots, C_m are arbitrary constants and the solution with respect to s of the equation g(s, x) = r is given by s = h(r, x).

(ii) equation (E_4) has the form

(E₆)
$$a_0(x) \frac{d^n g(y, x)}{dx^n} + \cdots + a_{n-1}(x) \frac{dg(y, x)}{dx} + a_n(x) g(y, x) + a_{n+1}(x) = 0,$$

where a_0, \ldots, a_{n+1} are functions of x, g is differentiable function of order n. In this case.

$$(2.2) \quad F(u_1, \ldots, u_m, x) = h\left(\left(C_1 g\left(u_1, x\right) + \cdots + C_{m-1} g\left(u_{m-1}, x\right) + g\left(u_m, x\right) \left(1 - C_1 - \cdots - C_{m-1}\right)\right), x\right)$$

 $(C_1, \ldots, C_{m-1} \text{ are arbitrary constants}).$

3. Remarks 1°. It easy to see that substitution Y = g(y, x) reduces equations (E_5) and (E_6) to linear homogeneous and nonhomogeneous ordinary differential equation of order n, respectively. This means that the equations with connecting functions of the form $F(u_1, \ldots, u_m, x)$ can be transformed to linear differential equations.

2° From the theorem 2.1 it follows:

General solution of the equation (E_s) is of the form:

$$g(y, x) = C_1 g(u_1, x) + \cdots + C_n g(u_n, x)$$

where u_1, \ldots, u_n are particular solutions of this equation.

Also, the general solution of equation (E_6) is of the form

$$g(y, x) = C_1 g(u_1, x) + \cdots + C_n g(u_n, x) + g(u_{n+1}, x) (1 - C_1 - \cdots - C_n)$$

where u_1, \ldots, u_{n+1} are particular solutions of this equation and C_1, \ldots, C_n are arbitrary constants.

 3° If we suppose that function F does not depend on x we obtain the following result:

Function $F(u_1, \ldots, u_m)$ is a connecting function for equation (E_5) if and only if (E_5) is of the form

(i)
$$a_0(x) \frac{d^n g(y)}{dx^n} + \cdots + a_{n-1}(x) \frac{dg(y)}{dx} + a_n(x) g(y) = 0.$$

In this case $F(u_1, \ldots, u_m) = g^{-1}(C_1 g(u_1) + \cdots + C_m g(u_m))$ (C_1, \ldots, C_m) are arbitrary constants, g^{-1} is the inverse of g; or

(ii)
$$a_0(x) \frac{d^n g(y)}{dx^n} + \cdots + a_{n-1}(x) \frac{dg(y)}{dx} + a_n(x) g(y) + a_{n+1}(x) = 0.$$

In this case connecting function has the form $F(u_1, \ldots, u_m) = g^{-1}(C_1 g(u_1) + \cdots + C_{m-1} g(u_{m-1}) + g(u_m) (1 - C_1 - \cdots - C_{m-1}).$ (C_1, \ldots, C_{m-1}) are arbitrary constants).

4° Theorem 1.1 can be formulated in the following way:

A twice differentiable function F(u, v, x) is a connecting function for the equation (E_1) if and only if one of the following two conditions is fulfilled:

(i) equation (E_1) has the form

(E₈)
$$y'' + A(y, x) (y')^{2} + 2(B(y, x) + a(x)) y' + C(y, x) +$$
$$+ 2a(x) D(y, x) + b(x) E(y, x) = 0$$

(a, b are functions of x). A, B, C, D, E are functions of y, x which satisfy the following system of partial differential equations:

(3.1)
$$E_y = 1 - AE$$
, $E_x + ED_y = E_y D$, $D_y = B - DA$, $D_x = C - DB$.

In this case all connecting functions F can be obtained from

$$\exp\left(\int \frac{dF}{E(F,x)}\right) = C_1 \exp\left(\int \frac{du}{E(u,x)}\right) + C_2 \exp\left(\int \frac{dv}{E(v,x)}\right)$$

 (C_1, C_2) are arbitrary constants);

(ii) equation (E_1) is of the form

$$(E_9) \quad y'' + A(y, x) (y')^2 + 2(B(y, x) + a(x)) y' + C(y, x) + 2a(x) D(y, x) + b(x) E(y, x) + c(x) G(y, x) = 0$$

(a, b, c are functions of x). A, B, C, D, E, G are functions of y, x which satisfy the following system of partial differential equations:

(3.2)
$$E_y = 1 - AE$$
, $E_x + ED_y = E_yD$, $D_y = B - DA$, $D_x = C - DB$, $G(EG)_y = 1$.

In this case all connecting functions F can be found from

$$\exp\left(\int \frac{dF}{E(F,x)}\right) = C_1 \exp\left(\int \frac{du}{E(u,x)}\right) + (1 - C_1) \exp\left(\int \frac{dv}{E(v,x)}\right)$$

 $(C_1$ is arbitrary constant).

4. Examples 1°. Equation

$$y'' + \frac{A''(yx)}{A'(yx)}x(y')^{2} + 2\left(\frac{A''(yx)}{A'(yx)}y + \frac{1}{x} + a(x)\right)y' + \frac{A''(yx)}{A'(yx)}\frac{y^{2}}{x} + 2a(x)\frac{y}{x} + b(x)\frac{A(yx)}{A'(yx)}\frac{1}{x} = 0$$

has the connecting function $F(u, v, x) = \frac{1}{x} A^{-1} (C_1(A(ux) + C_2A(vx)))$.

Also the general solution of this equation is of the form $y = \frac{1}{x}A^{-1}(C_1A(ux) + C_2A(vx))$, where C_1 , C_2 are arbitrary constants and u and v are particular solutions of the above equation.

2° Equation

$$y'' + \frac{2A''(t)}{A'(t)}y(y')^{2} + 2\frac{(y')^{2}}{y} + 2\left(\frac{2xA''(t)}{A'(t)} + a(x)\right)y' + \frac{2x^{2}A''(t)}{yA'(t)} + b(x)\frac{A(t)}{A'(t)} = 0$$

where $t = x^2 + y^2$, has connecting function given by

$$F(u, v, x) = (A^{-1}(C_1 A(x^2 + u^2) + C_2 A(x^2 + v^2)) - x^2)^{1/2}.$$

3° For the equation

(4.1)
$$\sum_{k=0}^{n} a_{n-k}(x) \left(\sum_{j=0}^{k} {k \choose j} A^{(k-j)}(x) y^{(j)} + B^{(k)}(x) \right) = 0$$

all connecting functions are of the form

(4.2)
$$F(u_1, \ldots, u_m, x) = \sum_{k=1}^m C_k u_k + \frac{B(x)}{A(x)} \left(\sum_{k=1}^m C_k - 1 \right).$$

 $(A, B \text{ are given functions}, C_1, \ldots, C_m \text{ are arbitrary constants}).$

4° Equation

(4.3)
$$\sum_{k=0}^{n} a_{n-k}(x) \left(\sum_{j=0}^{k} {k \choose j} A^{(k-j)}(x) y^{(j)} + B^{(k)}(x) \right) + a_{n+1}(x) = 0$$

has connecting function

(4.4)
$$F(u_1, \ldots, u_m, x) = \sum_{k=1}^{m-1} C_k (u_k - u_m) + u_m$$

 $(A, B \text{ are given function, } C_1, \ldots, C_{m-1} \text{ are arbitrary constants)}.$

 5° M. N. Spijker in [8] considered a class of ordinary differential equations of the form (E_4) such that function Φ satisfies the following condition:

(4.5)
$$\lim_{s\to+\infty} M(s, y, x) s^{-n} = 0,$$

where
$$M(s, y, x) = \max\{|\Phi(t_{n-1}, \ldots, t_1, y, x)| | |t_i| < s^i, (i = 1, \ldots, n-1)\}.$$

From the theorem 1.1. it follows that the equations for which F(u, v, x) is a connecting function, are of the form (E_2) or (E_3) . If we suppose that the condition (4.5) is fulfilled, we obtain $|g_{yy}(y, x)| = 0$, which gives g(y, x)

condition (4.5) is fulfilled, we obtain
$$\left| \frac{g_{yy}(y, x)}{g_y(y, x)} \right| = 0$$
, which gives $g(y, x) = 0$

=A(x)y+B(x). In this case equations (E_2) and (E_3) reduce to equations (4.1) and (4.3) for n=2, respectively. Then connecting functions are given by (4.2) and (4.4) for n=2, m=2. This is, in fact, a more general result from Spijker's for n=m=2.

REFERENCES

- [1] S. E. Jones and W. F. Ames, Nonlinear superposition, J. Math. Anal. Appl. 17 (1967), 484-487.
- [2] S. A. Levin, Principles on nonlinear superposition, J. Math. Anal. Appl. 30 (1970), 197-205.
 - [3] J. D. Kečkić, On nonlinear superposition, Math. Balkanica 2 (1972), 88-93.
 - [4] J. D. Kečkić, On nonlinear superposition II., Mat. Balkanica 3 (1973), 206-212.
- [5] V. Lj. Kocić, Some examples for nonlinear superposition, Publ. Inst. Math. (Beograd) 22 (36), (1977), 139-143.
- [6] V. Lj. Kocić, Theorems on nonlinear superpositions, The general first order equation: Univ. Beograd. Publ. Elektrotehn. Fak. Scr. Mat. Fiz. № 577 № 598 (1977), 45—48.
- [7] V. Lj. Kocić, Theorems on nonlinear superposition: II, The general second order equation, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. in print.
- [8] M. N. Spijker, Superposition in linear and nonlinear ordinary differential equations, J. Math. Anal. Appl. 30 (1970), 206—222.