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0. In [1] S. E. Jones and W. F. Ames introduced the concept of nonli-
near superposition for ordinary and partial differential equations:

Denote by S(E) the set of all solutions of differential equation (E). If
U, ..., U, ©S(E) implies F(uy, ..., u,)&S(E),

then the function F is called “connecting function” for (E). It defines a nonli-
near superposition for (E).

In a number of papers ([1]—[7]) nonlinear superposition for partial
differential equations were investigated.

M. N. Spijker [8] considered a class of ordinary differential equatlons
for which linear superposition is the only kind of superposition which is
possible.

In section 1, applying a similar method as in [7], we shall prove the
theorem 1.1 which gives sufficient and necessary conditions such that F(u, v, x)
is connecting function for equation

(E) : Y'=f0y, %

(f is differentiable function of order 3).

In section 2 we shall formulate an analogous theorem for ordinary
differential equations of order n(n>2).

Some remarks and examples are given in sections 3 and 4.

Remark 0.1. We consider equation (E,) instead the general equation
o', y, ¥, x) 0 for technical reasons. Similar conclusions can be obtained
for this equation.

In further text ¢, denotes the partial derivative with respect to 1th
variable of ¢ and ¢, =({));-
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1. Theorem 1.1. A twice differentiable function F (u,v, x) is connecting
function for equation (E,) if and only if:

(i) equation (E,) has the form
(E») a; (%) (8, (¥, X) V' + 8, (35 X) (V)2 428, (75 X) Y + 8 (¥, X))

+2a2 (x) (gy(y3 x)y,'i'gx(y: x))+a3 (x)g(y, x)=0

(a,, a,, ay are functions of x, g is a twice differentiable function).

In this case
(1.1) Fu,v, x)=h((C,gu, x)+C,g (¥, x)), x)

where C,, C, are arbitrary constants and the solution with respect to s of the
equation

(1.2) g(s, x)=r
is given by

(1.3) s=h(r, x);
or

(ii) equation (E,) is of the form

(Ey) a, (%) (8 (s X) V" + 8,y (35 X) (¥ +28yx (Is X) V' + 8x (95 X))
+2a,(x) (8, (3> X)¥' + 8. (3, X)) +a,(¥) g (¥, X)+a,(x)=0
(@, ..., a, are function of x, g is twice differentiable function).
In this case
(1.4) Fu, v, x)=h((C,g, x)+(1-C)g®, x)), x)

(C, is arbitrary constant).

Proof. 1°. Sufficient conditions. Let u, v&S(E,). Then from (1.1) it
follows g(F, x)=C, g (u,x)+ C,g (v, x). Using this, it easy to check that F is
also a solution of (E,).

Similarly we can prove that, if condition (ii) is fulfilled, then F, given
by (1.4), is a connecting function for (E,) and the first part of the theorem is
proved.

2° Necessary conditions. Let u, vES(E,) and let F(u, v, X)ES (E,). Then
we have

(1.5)  Ff(,u,x)+F,f(',v, X)+ F, ) +2F,u'v +F, (')
+2(Fyptt + F, V) + Fyy=f(F,u + F,v' +F,, F, x).

Differentiating (1.5) twice with respect to ' and v’ we find S (?{E » F, x) =0
X

which means that f has the form
(1.6) St 5, x)=A(s, x)t2+ B(s, x)t+C(s, x)

(4, B, C are functions of s, x).
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Substituting (1.6) into (1.5) we find:

F
1.7 A Fa X)= = ’
(1.7 (F, x) FF,
(1.8) F,A(p, x)+ F,,= A(F, x) (F,)%
(1.9) F,B(p, X)+ Fpy=A(F, x)F, F,+ B(F, \) F,,

(1.10)  F,C(u, x)+F,C(u, X)+ F .= A(F, x) (F,)*+ 2B(F, x) F,+ C (F, x)

where pc{u, v}.
Furthermore, let
(1.11) As, x)= —Zu %)

G, (s, x)

where G (s,x) = o, (X) f exp(— f A(s, x) ds) ds + a, (x) («,, o, are functions of x).

From (1.7) it follows (G (F, x)),,=0 and we have G (F, x)=9 ¥, x) +
Y (v, x), (¢ and ¢ are arbitrary functions in u, x and v, x respectively).
Furthermore, from (1.8) we obtain that ¢ and ¢ have the form ¢(u, x)
=K,(x) (G, x) —L(x)), b, x)=K,(x) (G, x) — L(x)), where K,, K,, L
are arbitrary functions of x.

After substitution

(1.12) g2(s, X)=G (s, x)—L(x)
we find
(1.13) g, x)=K,(x)g(u, x)+K,(x)g (v, x).
Then (1.11) becomes
(1.14) AGs, )= — 889
g (s, )

Differentiating (1.13) with respect to p and x (p<{u, v}) and using (1.9)
8px (P, ) K, ()

we find B(F, x)+‘gf-£’—39=3(p, x)+

gr (F, %) g (%) K, (%)
After substitution B(s, x)= ——H‘—x(s’—x) , we obtain
H (s, x)
(1.15) 9 (10g (M))=_a_<1og (MKP (x))),
ox H.(F, x) ox H,(p, x)
where p&{u, v}. From the above it follows
(1.16) 9 (log (—g’(s’ %) ))= _6®
ox H, (s, x) a, (x)

where a,, a, are functions of x.
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From (1.15) and (1.16) it follows K,(x)=C,, K,(x)=C, (C,, C, are
arbitrary constants) and
(1.17) g(F, )=C,g(w x)+ C,g (v, %).
Also we have
'(118) . B(S, X)= ___gsx(s’ X) _ a2 (X) .
g(s, x)  a;(x)
Using (1.14), (1.17), (1.18) we find that (1.10) becomes

Fu (C(u, x)—l—gl’i@_*_z& M)+Fv (C(V, x)+gxx(vs x) +2a_2~ gx(V, X))
. 8x (u5 x) a, 8. (u, x) g, (V, x) a, g, (V, x)

N T SR L UL
gr(F, x) a, gr(F,x)
After substitution

(1.19) Ces, =328 B &GN _po
g.(5,%)  a &(s X)

we get
(1.20) F,D(u, x)+F,D(v, x)=D(F, x).

Differentiating (1.20) with respect to u and v and using (1.7), (1.8),
(1.14) we find

a2 Dy 0+ DE FFED _p (5, %)+ Do, P GG
gr(F, x) g (1, X) a,(x)
where p&{u, v} and a, is a function of x.
Then we have
(1.22) D (s, x)= _ay(x) g (s, X)+a,(x)
a, (x) g (s, X)

where a, is a function of x.
From (1.19) and (1.22) we find

(123 Clon — 46N +26(I 860 +0,9EG )10
a, (), (s, %)

Furthermore, from (1.17), (1.20), (1.22) it follows that the following
condition must be satisfied

(1.24) (C,+C,—1)a,(x)=0.

The following two cases are possible:

1° C,+C,#1. Then a,(x)=0 and from (1.17) it follows that F is of
the form (1.1). Also, from (1.6), (1.14), (1.18), (1.23) we conclude that equa-
tion (E,) has the form (E,).
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2° C,+C,=1. Then from (1.17) we find that F is of the form (1.4).
Also, from (1.6), (1.14), (1.18), (1,23) it follows that equation (E,) has the
form (E,).

This proves the theorem.

2. In this section we shall formulate a theorem analogous to Theorem 1.1
for ordinary differential equations of order n.

Theorem 2.1. A differentiable function of order, F(u,, ..., u,, X)
(m<n) is a connecting function for the equation

‘(E4) y(n)=(I)(y(n—1)’ L] ay’9 Y 'x)
(n==22) if and only if one of the following two conditions is satisfied:
(i) equation (E,) is of the form

® @B WEP2D e, 9-0,
dxn dx

{4, ..., a, are functions of x, g is diferentiable function of order n). Then F
has the form

2.1) FQuy, oo s thy, )=h((Cig @, )+ - - - +Cpr 8 Uy, X)), X)

where C,, ..., C,, are arbitrary constants and the solution with respect to s of
the equation g (s, x)=r is given by s=h(r, x).

(ii) equation (E,) has the form

(Eg) ao(x)‘—i:g—(—Ji’i)jL < +a,,_1(x)m+an(x)g(y, x)+a,., (x)=0,
dx® ’ dx

where ag, ..., a, , are functions of x,g is differentiable function of order n.
In this case.

(2.2) Fuy, ooty X)=h((C g, X)+ -+ - +Cp,8Up_;> X)
+g(um,x) (I_CI_ ter m—l))’ x)

Cy, ..., C,_, are arbitrary constants).

3. Remarks 1° It easy to see that substitution Y=g (¥, x) reduces
equations (E;) and (E,) to linear homogeneous and nonhomogeneous ordinary
differential equation of order n, respectively. This means that the equations
with connecting functions of the form F(u,, ..., u,, x) can be transformed to
linear differential equations.

2° From the theorem 2.1 it follows:

General ‘solution of the equation (E,) is of the form:
g3 x)=C g, x)+ - - +C,gu, x)

where u, ..., u, are particular solutions of this equation.
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Also, the general solution of equation (£;) is of the form
g x)=Cigu, )+ -+ - +C,8 Uy X)+8Uyr1, X) (1-C;— - -« =C))

where u,, ..., u,,, are particular solutions of this equation and C,,..., C,
are arbitrary constants.

3° If we suppose that function F does not depend cn x we obtain the
following result:

Function F(u,, ..., u,) is a connecting function for equation (E,) if and
only if (E) is of the form

O a@ED o W ED g e m=o

In this case F(u;, ..., u,)=g 1 (Cig@)+ -+ +Cnhgy,)) (Cy..., Cp
are arbitrary constants, g~! is the inverse of g); or

;. dr d
i a@TED e %D g0+, -0,
X" dx
In this case connecting function has the form F(u,, ..., u,)=g ' (C,g(u,) +
oo FCp 8 U)W 1 -Cy~ - - - =C,_). (C,, ..., C,_, are arbitrary
constants).

4° Theorem 1.1 can be formulated in the following way:

A twice differentiable function F(u, v, x) is a connecting function for
the equation (E,) if and only if one of the following two conditions is fulfilled:

(i) equation (E,) has the form
(Ep) V'i+A4(, x) (V) +2B», x)+a(x)y' +C(y, x)+
+2a(x)D(y, x)+b(x)E(y, x)=0

(a, b are functions of x). 4, B, C, D, E are functions of y, x which satisfy the
following system of partial differential equations:

(3.1) E,~1-AE, E,+ED,~E,D, D,~B—~DA, D,~C—DB.

In this case all connecting functions F can be obtained from

P (f E(fx))zc‘exp (f EZ,'@)*Q P (f E(iv x))

(C;, C, are arbitrary constants);

(i) equation (E,) is of the form

(Ep) Y +A4(,x) (V)P+2BW», x)+a(x)y +C(», x)+2a(x)D(», x)
+0(X)E(y, )+ c(x)G(y, x)=0
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(a, b, ¢ are functions of x). 4, B,C, D, E, G are functions of y, x which
satisfy the following system of partial differential equations:

(3.2) E,=1-AE, E,+ED,~E,D, D,=B—DA, D,~C—DB, G(EG),=1.

In this case all connecting functions F can be found from

eXIJ(fE(‘zi:,ﬂx)):C1 exP(fE(f,lx))Hl—CI)eXp(fE(iv’ x))

(C, is arbitrary constant).

4. Examples 1°. Equation

"(y) 2y A" (yx) A 4" (yx) y*
Y om0 (A'( )y+x+ ()) Tom x T HOT
+h 0D 1 _,
A (yx) x

has the connecting function F(u, v, x)= L A™Y(C (4 (ux)+ C, A (vx)).
x

Also the general solution of this equation is of the form y = LA‘1 (C,A(ux) +
x

+C, A (vx)), where C,, C, are arbitrary constants and u and v are particular
solutions of the above equation.

2° Equation
24" (1)
A'(1)

yll +

sz @ (2xA"(t)+ ()) 254" 1)

A4' (1) y4' (@)
At
+b(x) ,( )
A' ()
where #=x2+ y?, has connecting function given by
F(u, v, x)=(A"1(C, A (X2 +ud) + C, A (x> +v?)) — xD)'2,

3° For the equation

@.1) Z Gy (%) (z (’f)A(k-»(x) #+ B® (x))=
=0 \J .
all connecting functions are of the form
B (x) )
4.2 Flu,...,u,,x)=> Ciu+—= C.—1).
@2) (o )= 3 Cont - (,Zl A

(4, B are given functions, C,, ..., C, are arbitrary constants).
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4° Equation

k
J=

@.3) S 4, (%) ( ("_)A<k-f> () D 4+ B® (x)) 8y, ()=0
k=0 J

0

has connecting function

m—1
4.4 Fup, ooy thyy X)= 3 Cp(ty— thy) +
k=1

(4, B are given function, C,, ..., C,_, are arbitrary constants).

5° M. N. Spijker in [8] considered a class of ordinary differential equa-
tions of the form (E,) such that function @ satisfies the following condition:
4.5) lim M(s, y, x)s =0,

S—>1 00

where M (s, y, x) =max {| @ (t,_,, ..., 1, ¥, 0| | [1,]<s, (=1,...,n—1}.

From the theorem 1.1. it follows that the equations for which F(u, v, x)
is a connecting function, are of the form (E,) or (E;). If we suppose that the
8yy (¥, X)
8 (¥, x)
=A(x)y+B(x). In this case equations (E,) and (E;) reduce to equations (4.1)
and (4.3) for n=2, respectively. Then connecting functions are given by
(4.2) and (4.4) for n=2, m=2. This is, in fact, a more general result from
Spijker’s for n=m=2.

condition (4.5) is fulfilled, we obtain =0, which gives g(y, x)=
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