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1. Introduction

The convolution of two arithmetical functions f(n) and g (1) (or Dirichlet
convolution, to distinguish it from unitary and other possible arithmetical con-
volutions) is the function

(1.1) h(m= > f(n/d)g(d)= 3 gn/d)f(d),

din din

where the sum is taken over all positive divisors of n. A common procedure
in dealing with the asymptotic formula for the sum 3 h(n) is to express A (n)
as a convolution of f(n) and g(n) and to derive the asymptotic formula for
> h(n) from the asymptotic formulas for 3 f(n) and 3 g(n). Such convolu-
n<x nsx n<ix

tion methods were investigated by many authors, and notably by J. P. Tull
who in [13] and [14] proved two theorems for the even more general case of

the Stieltjes convolution fA(x/u) dB (u).
1

This paper contains two convolution theorems with sharp error terms, of
which Theorem 1 is very general, while Theorem 2 may be regarded as a spe-
cial case of Theorem 1| when g(n)=u (7). Theorem 2 gives also the error term
under the assumption that the famous Riemann hypothesis about the non-trivial
zeros of the zeta function is true.

In the formulation of both theorems instead of the convolution (1.1) we use

(1.2) h(m)=73 f(njd*) g (d).

dk|n

5%
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which may be reduced at once to the form (1.1) by setting (k is a fixed integer)

g(m) n=m*

(1.3) G(n)={ 0

The reason for introducing (1.2) lies in the nature of applications of
Theorem 2, since many divisor functions /(1) may be expressed as h (n) -
= > @ (d) f(n/d*), so that Theorem 2 is readily applicable. A number of these

dk|n
applications is given in Section 3.

For the more general Theorem 1 some properties of slowly oscillating
functions are needed. By a slowly oscillating (also called slowly varying) func-
tion we shall mean a positive function L (x) defined for x>0 and continuous for
x2x,>0, such that for every ¢>0

(1.4) lim L (ex)/L (x) = 1.

J. Karamata in [4] characterized such functions in the form

(1.5) L=a@)exp( [3¢) 1 dr)

where a(x) and 8(x) are continuous for x>x,, a(x)—a,>0 and 3 (x)—~>0 as
x—> oo, Slowly oscillating functions naturally arise in number theory since most
of the functions like log?x, loglogx, exp (ClogBx) (for B< 1) that appear in
the asymptotic formulas for arithmetic functions are slowly oscillating. For a
comprehensive account of slowly oscillating and the more general slowly vary-
ing functions see [8].

2. Statement and proof of theorems

Theorem 1. Let f(n) be an arithmetical function for which

!
@.1) 2 M= axLix)+0x), 3 Ifm|=0G"P®x),
i=1

n<x n<x

where a,>a,> - - - >a;>1/k>a>0, Cys «-- 5 € are constants, k is a fixed na-
tural number, L (x), ..., Li(x) are slowly oscillating functions, and P(x)is a
non-decreasing slowly oscillating function. Let further g (n) be an arithmetical func-
tion for which

22 3 em=0EN@) for some 0<b<1, 3 |g ()]0,

n<x n=x

N (x) is a slowly oscillating function of the form N x)=exp (Co(x), o (x)=

= f n(@) t1dt, wm(x) is continuous and positive for x=x,, limn(x)=0,
X—ro0

X0
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lim P(x) exp(Aw{(x))=0 for every A<O0, and if b=1, C is negative, and if

b<b<l, C is positive.
If h(ny= 3 f(n/d*)g(d) then there exist functions Q,(x), ..., Q;(x) such

dk|n
that Q,(x)=0 (x%) for every >0 and i=1, ..., and

(2.3) Z h () = Z ;X" Q; (x)+ A (x),

nox

where in the case b=1 A (x)=0 (x'* exp (D w, (x))), », (x) ==f7)(t") t=1dt with

~x(')/", D<0 for every u<llk. In the case 0<b<<1 we have A(x)=
-~0(\’C exp (D w (x))), where D>>0 and c=(a, —ab)/(a,a—ak+1-b).

Proof. Let y, z>1 and yz=x. Then using (1.3) we get

2hm=3% > G@fnjd)y= 3 Gm)f(m=

n<ix din mn=Tx

2Gm 3 fim+ Zf(n) 2 Gm)— ZG(m)Zf(n) Sy +8,-8;.

msy n=<x/m m-=_x/[n my

ZG(H)— > =0 N, SiGm= 3 igm]|=0x"",

<x n<x'k n<x n<xi/k

so that we obtain

S-S Gm 3 fn- zcx“tz G (m)m “L, (x/m)+0<x“ S [G(m):m-a)=

mely nixjm =1 m=" m<y

ZI ¢;x% 0 (x) + O (x*y!/k=),

i-=1

where y=y(x) will be suitably chosen later, and where we have set

(2.4) 0,0)= S Gmm “IL(xjm= S glmym L (x/m).

m<y m<ylk

i) The case b=1. If b=1 then N (x) it decreasing and therefore for
n<z we have N ((x/m)V*)<{ N (y'/*) which gives

S,= 3/ 3 Gm)=0 kN (M5 |f(n)|n=11k) =

n<z m="x/n n<z
O (xHkzo=tk P (2) N (y'6)) = O (x yilk=a1 P (x[y) N (y1I)).

=2 Gm) 3 f(m=0z"P(2) y* N(y/%) =0 (x% y'k=a1 P (x[y) N (y'/¥)).

m<y n<z
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Therefore we obtain

(2.5) 2 hm= IZ € X% Q;(x) + 0 (x* Yk 1+ O (xo1 ylk—a1 P (x[y) N (y'/¥)).
i=1

no-Xx

Let now O<u<1/k and choose y=x (N (x¥)/@-a so that y<x for
x>x,. From (1.5) it follows that L (x)=0O (x¥) for every ¢>0 if L (x) is slowly
oscillating, which gives x*< x!k=s{ yl/k for 0<e<1/k—u, so that N (y/A)<
<N (x*). This means that the error terms in (2.5) may be written as

N(plik
O (i (v epe-anes o (1.4 v L)) -
O (il (N (x))(1k-ltes ) P (x4),
since x/y<<x* for x large enough. If C,=(C/k — Ca)/(a, —a), then for every 4 <0
(N (x)tfe=alta=a P (x4) = P (x*) exp (Ao (x4)) exp ((C, ~ 4) o (x%)) =
=0 (exp (D w, (v))),

where D= (C, — Au, v, (x)= fv;(t“)t‘ldt, xl:.\'(',/", since

X1

Iim P (x*) exp (Ao (x*) =0.

X —>

ii) The case 0<hb<1.. If 0<<bh< | then N(x) is increasing and therefore
N (xkn=tUK)y< N (x), so that

S, =0 (XP*N(x) 3| f () | n=b%) = O (xbIk N (x) P (x) z1=blk) =

O (x4 ybk=bi N (x) P (x)),

and the same estimate holds for S,, which yields
1
(2.6) > h(m= ¢ X4 Q;(x) + O (x2 ylik=ay 4 O (xa yblk=ai N (x) P (x)).
n<x i=1

If D>C then
N (x) P (x)=exp (Do (x)) exp (C— D) w (x)) P (x) = O (exp (D w (x))),
since lim P (x) exp (4w (x))=0 for A=C—D<0. Taking now y=x? where

X > 00

g=k(a,—a)/(l ~b+k(a, —a)) we obtain finally

i

!
D M= c¢;xQ;(x)+ 0 (x exp (Dw (x))),
nsx =1

where ¢=(a, —ab)/(1 —b+k (a, —a)), as stated in the theorem,
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Concerning the functions Q;(x) it follows from (2.4)

0,0 =0 (3 Gmim L (x/m)=0 (x*3 |G m)|m ¥)=0 ),

m=y m=y

since L;(x)=0 (x¥), and the second sum above is bounded. It may be further
shown that
ka.

@7 lim Q,(/LW~S gwn

x>0 n=1

which means that Q;(x) is slowly oscillating if it is continuous and the above
limit is positive, since it is then asymptotic to a slowly oscillating function. A
more detailed discussion is omitted, since in many applications to divisor prob-
lems the functions Q;(x) turn out to be polynomials in log x.

Theorem 2. Let f(n) be an arithmetical function for which

!
(2.8) > fm=73 NP (logx)+ 0 (x%), T |f(n)]=0 (x* log" x)
noix i=1 nolx

where a,>a,> - - - za;>1[k>a>0, r=0, P, ), ..., Py(t) are polynomials in
t with degrees not exceeding r, and k is a fixed natural number.

If him= S p@f (n]d¥) where w.(n) is the Mobius function, then

dkin
!
2.9) Shm=7 x“ R, (log x) + A (%),
neix i1
where R, (t), ..., R;(t) are polynomials in t, and for some D>0
(2.10) A (x) = O (x! exp (— D log¥s x - (log log x) ~/%)).

If the Riemann hypothesis is true, then for some D> 0
(2.11) A (x)=0 (x° exp (D log x - (log log XY, c=Qa,—a)/2ka,—2ka+1).

Proof. Theorem 2 is a special case of Theorem 1 when g(n)=p(n),
¢; L; (x) = P;(log x), P(x)=1log" x. For > u(n) we use the following best-known

estimate due to A. Walfisz [15]:

(2.12) M(x)= 3 wp()=0 (x exp (- Ce(x))),

where C>0 and from now on ¢(x) denotes ¢ (x)=log¥s x-(log log x)~'°. This
corresponds to the case b=1 of Th. 1; if the Riemann hypothesis that all

nontrivial zeros of L (s) lie on s:—;+it is true, then as shown in [12], Ch. XIV

(2.13) M(x)= S p(m=0 " exp (Ca(x),
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where C>0 and from now on « (x) denotes « (x)=Ilog x-(loglog x)-!, and

this corresponds to the case b= ;— of Th. 1. If one could prove for some

1/2<b<1 M (x)=0(x"), then Th. 1 would give for some s>0 A (x)=
= O (x¢ log® x), where ¢=(a, —ab)/(a, —ak + 1 —b). It should be noted that

&3 Gmm Lixm-c S um L xm) -

m=<y m=1

—ka,
—¢ > p(mm "L (x[m¥),
mk>y

and that L,(x/m*) can be written as a polynomial in logx, so that

& 3 wmm ' L(ximb =R, (og 1),

m=1

where R;(t) is a polynomial in 7, and it remains to show that sums of the

—ka, .

type 3 p(m)m i log4m contribute to the error term. If we set p'/k—y,
m>y‘/k

ka;=c>1, then

2. w (m) m— log4 m=f t=¢log4t-dM (1) =

m>y
=v~¢ M (v) log4 v+0(f (M (2)! =<1 logA t-dt).

If we use (2.12) then exp (—Ce(x)) is decreasing for x>x, and thus

> w(mym clog? m=0 @ ~exp (—Ce(v)) log'v)+

m>v
+0(@exp(~Ce () [ 1< loght-dt)= O (v~ exp (C (v)) log” v).

If we use (2.13) then x~'2 exp (Cw (x)) is decreasing for x>x, and so

> w(mym=<log? m=0 (v'2-<exp (C o (v)) log? v) +

m>v
+O0(~Y2exp (Cw(v) f t~<log tdt) = O (v'/2~cexp (Cw (v)) log# v).

The remaining details of the proof are the same as in Theorem 1; note that

, (x)~u=2P ¢ (x).
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3. Applications

1. Let first F, (9= S fo(mn"=2k(s)[{(25) for k>2. Then we have
n-=1

fu (M= > w(d) 7, (n/d*) where <, (n) is the number of representations of n as
d? n

a product of k factors and > 7, (m)n=*=Ck(s). Since 7, (n) is multiplicative

n--1i

a+k—1

and T, (p“)x( ) then f, (n) is also multiplicative and

£ 1(a+k—1 )h(a%v-k‘d )7 2a+k-2 (a+k—-3 )

k—1 k-1 a k-2

For special values of k4 this gives the following well-known arithmetical
functions:

a) for k=2 we have f, (p) -2 so that f, (n) - s 1
dn, (d. njd)=:1

b) for k=3 we have f;(p*)=2a+ 1| so that f,(n)=rx(n?), where t(n) is
the number of divisors of n,

c) for k=4 we have f, (p?) = (a+1)? so that f, (n) =12 (n).
It is known (see [12], Ch. XII) that

(3.1) S 7 () =xP,_, (log x)+ 0 (x'*%).

noox

where P,_,(¢) is a polynomial of degree k —1 in ¢, a,>(k~1)/2k, for k>4
and every €>0 a, <\(k— 1)/(k+2)+¢, «,<<346/1067, o,<5/11 (see [5] and [4]).
It has been conjectured (see [12], Ch. XII) that for every €>0 and k>>2 one
has o, =(k—1)/2k+¢<. If we suppose that o, <<1/2 (so far this has been shown
to be true only when k=2 and k=3), then Th. 2 may be applied at once
to give

(3.2) > e =xH,_, (log x) + A, (x), Ay (x) = O (x'2 exp (— C, & (x))),

niix

where H,_, (t) is a polynomial of degree kK — 1 in ¢ whose coefficients may be
found for example by residues, and C, >0 is a constant depending on k.

If besides o, < 1/2 we assume the truth of the Riemann hypothesis, then
the second part of Th. 2 gives for some D, >0

@—2)IG-o)

(3.3) A@)=0(x exp (D, @ (x))).

The special cases of (3.2) and (3.3) when k=3 and k=4 were obtained
in [6] and [9].
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2. If d'n and (d, n/d)=1, then d is said to be a unitary divisor of n.
For integers a, b not both zero, let (a, b)** denote the greatest unitary divisor
of both 4 and b. A divisor d>0 of the positive integer n is called bi-unitary
if din and (d, n/d)**= 1. Let t** (n) denote the number of bi-unitary divisors
of n Recently D. Suryanarayana and R. Sitaramachandra Rao proved in [11]

pP-p-1
(3.4) T** (M) =ax ((log X+2y-1+2%logp -4~ - = )Jr-E(x),
2, VIRl
where E(x)= 0 (x'"2exp (— A<(x))) for some 4>0, v is Euler’'s constant and
a=T[(=(p—Dfp*(p+1)). If the Riemann hypothesis is true, then for some
4

A>0 E(x)= 0 (xC /6= exp (A4 w(x))), where ®, (X346/1067) is the number
appearing in the Dirichlet divisor problem (see (3.1)).

The lengthy proof of (3.4) given in [I1] may be shortened as follows.
T** (n) is clearly a multiplicative function and

THE ([1(;I .. 17:‘",) H a; II‘“ (a,+1),
a; even a; oda

so that for Re s> 1 we have

(3.5 F A= +2p 4 2p 21 dp-1dp-ti L)

el P

=) U)[C2s)=F,(s)U (s)

where F, (s) = > fy(myn=s is defined at the beginning of this section, and

no.1

Ul(s)= i u(n)n=* is abolutely convergent for Res>1/3. From (3.5) we have
n=]

> % (n) == > u(n) > fy(m), and using (3.2) and (3.3) for k=2 we obtain

n<x ne.x m=<x|n

(writing > u(n) A (x/n) = > + > and estimating each sum separately)

noxtiz xW2aopoix

3.6) > ¥ (n) = Ax log x + Bx + E (x),

n-lx

where E(x) is of the form (3.4), and it remains to evaluate 4 and B.

Setting V (s) = i vmn—=U(s)/L(2s) we obtain

ne-l

S ot (n) = > vin > T(m)= > vim (i log v,'f,+(2Y_ ]);‘_'..+0(xaz n—&xz))’
x n n n ]

nex nolx m<x/n o
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where t(n) is the ordinary divisor function. Collecting terms and comparing
with (3.6) we get

A:ni;l v(im/n=V(l),

B=Q2y-DV ()~ Svmntlogn=@2y- DV 1H+V' (D).

n=1
V()=T[(=p P2 (1 +2p s+ 2p 284 dp™ 3+ 4p~H+ . o )=
»
=TT =p=*y+2(p*+ D7),
r

Vi=T]0-2p7" +p72+2/(p+1)=a (as given by (3.4)),
P

’ 1 (l _p—s)p—s_pS(p.r+l)—2
14 V(s)=(og V —92%] Mzmp b TP\ ) T
@ @ =togV (o) =23 logp:t P 1SR

Therefore V' (1)=2V ()3 prop-l ‘log p, which shows that 4 and B
S ptt2p 41
have the same values as the corresponding constants in (3.4).

3 In [2] E. Cohen defined an exponentially odd integer as an integer
n=p% ... pt where a,, ... a; are odd numbers and proved

(3.7 0% ()~ [T (= (p*+p) ") x+ 0 (x' log ),
p

where Q* (x) is the number of exponentially odd integers not exceeding x.
If we set

A (n):{ 1if » is exponen.tlally odd’ then Q*(x)= S /i (n) and
0 otherwise nex
H(s)= S h(mn =T (1 +p=+p 354 p~3s4 -« - )=
n=1 p

=T +p (1 =p~2)7 ) =F(5)[C (25)

where F(s)= i fmn< =L (s)G(s) and G (s) is absolutely convergent for

n=1

Res>1/3, so that for every >0

S fm=G(1)x+0(x1B+).
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Since fi(n)= > u(d)f(nfd?) Theorem 2 sharpens (3.7) to

d2 . n

Q*®)=T]U=(P+p~")-x+0 (x'? exp (- C=(x))), C>0.

P

4. Theorem 2 may be also applied to the functions generated by
C(as) C(bs)/C(cs), where a, b, ¢ are natural numbers and cz22. If we write

i d(a, b; myn=>*=¥ (as) L (bs) then for a£b
n=1

(3.8) > da, bymy= > 1=C(bla) x4+ (alb) x"b + A (x; a, b).

menb < x

H.-E. Richert proved in [7] that for b>a>1 the following estimates hold:
A(x;a,b) = O (x*Caw30)if p2a, A(x;a,b) =0 (x*®alogx) if b=2a, A(x;a, b)=
== O (x¥@b+59) if h>>2q. Therefore for example

ST (23 X0 (x9)

minpdx

where certainly @<(2/15, and if we set >amnc=0(2s){(35)/C(ks) then
n-1

for 4<< k<7 by Theorem 2 we obtain

(3.9 2> 4 (m) = (@ (3/2)[C(k[2)) x4 (T (2/3)/C (k[3)) X1+ Ay (x)

where for some C~C(k)>0 we have A, (x)= O (x'/% exp (—Cz(x))), and if the
Riemann hypothesis is true. then A, (x)=0 (x( -/ +k-2ka) gxp (Dw(x))) for
some D=D(k)>0. It can be seen that > a,(n) represents the number of n

nex 3

not exceeding x of the form nepi. .. pii, where every a;(j~1,...,i) is of
the form 3m or 3m—1, > as(n) = > I, and 3 a,(n) represents the

" x nmnd_ x, (m,n)-1 n<ix

the number of n not exceeding x of the form n=ps ... p4, where a,=

>2,...,a>2. Such numbers are called powerful or sclluarefull numbers, and
the estimate (3.9) for the case k =6 was obtained by D. Suryanarayana and
R. Sitaramachandra Rao in [10].

5. If in the previous example ¢=a-b then

L@ LB (@th)s)= 3 mmpmn, s = S L.
n—1

. d? §b-n,(d, 8)-1
Using (3.8) and Theorem 2 we obtain (b>a>1)
(3.10) s (W =L (/) [C((a + b)[a)] x'1+ [T (a/b) [C ((a -+ b)b)] x1/® +

nZx

1

+0 (" exp (- Ce (),
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where C is a positive constant depending on ¢ and b. The formula (3.10) was
obtained by E. Cohen in [3] with the poorer error term O (x!/@+%" Jog x). Cohen
considered the integers ne=ph. . pli and denoted by S, , the set of integers

n such that every a;(j=1,...,1i) is divisible by either ¢ or b, and by S,

the set of integers such that every a; is divisible by either @ or b but not by
both. If we set

1 ne=S,,
0 n&S,,

then S, , (x)= 3 j,,(n) and S;’b (x)= 3 J, ,(n) represent the number of inte-

gers from S, , and S, respectively not exceeding x, and Cohen obtained

C *
1 nCSa’b

. (n):{
%o nes,

Jous (1) :{

(3.11) S, p (X)=Ax!e 4 Bx!Ub 1 O (x/@+d) Jog x),
(3.12) Sy, (x) = A* x!e 4. B* x1b 4 O (x@ D log x),

where 4. B, A*, B* are explicit constants depending on « and b, (a, b)=1,
b>a>1.

C e if a; “
Since j, , (n) is multiplicative and j, , (1)“):[I @ or _b‘a
0 otherwise

Jap (8)= i Jap N~ = F, ,(s) H, , (5)

n -l

as__ | bs __ 1
where F, , (5)=C(as) L (bs)/C ((a + b)s) and H, ,(s) = l;] (l — (p:b[j* 5 215(’;”’” _)1))

has the abscissa of absolute convergence equal to 1/ab. Likewise since j', (n)
is also multiplicative

Ty (=3 Jap (n~*=F, , (s) Ha s (s),
n=1

* _ (pas__l)(pbs_l)
Ha, b (S) = ];I (l - 2 (pab’;—’ﬁ(;zms ——1)~> .

Using (3.8) and Theorem 2. we obtain (b>a>1, (q, b)=1)
(B.13) S fo,(m=C0/a)H, , (1]a) x"1*+{(a[b) H,,, (1/b) x'/* + O (xP @),

(3.14) S fh ) =Lbfa) HE, (1/a) x'a+{ (afb) HY, , (1/b) x'o + O (xE@h)
where D(a, b)y<<1/(a+b) and E(a, by<<l/(a+b) and
S fus M =L@ B H, y(5), S fons ()1~ =L (as) L (bs) Hov o (5)
n==1 n=1

Since j,,, M= > w(@fs(/d**?) and j (M= > w(@/f, ,n/d*+P)

da+bi‘n_ da+b‘!n
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Theorem 2 gives for b>a>1, (a, b)=1 the following improvement of (3.11)
and (3.12):

(3.15) S, 5 (X) = Axta L Bxlb 4 O (xM@+B) exp (— C e (x))),
(3.16)  Sa () =A% x4+ B* xUP 4 O (x1@+D) exp (~ De (x)))

where C and D are positive constants depending on a and b and
A= bla) H, , (1]a))[C(a+b)]a), 4*={C(b/a) H ,(1/a))[C(a+ b)/a),
B=(L(afb) H,, , (1/b))[C ((a+b)[b, B*=(L(a/b) H, ,(1/B)){C((a+b)/b).

The constants A* and B* obtained by E. Cohen in [3] differ from the
above ones and are incorrect, due to a mistake in his equation (4.14).
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