FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS IN LOCALLY CONVEX SPACES

O. Hadžić

(Received March 8, 1977)

In this paper we shall prove some theorems on the fixed point for multivalued mapping $T: M \to C1$ (M) where M is a closed subset of the sequentially complete locally convex space E and C1 (M) is the family of all closed subsets of the set M. Let $\{p_i\}_{i\in I}$ be the family of seminorms defining the topology in E. First we shall give some notations which we shall use in the sequel.

Let k be a positive integer and for each $i \in \{1, 2, ..., k\} = A$ let $f_i: I \to I$. Let $q: IxA \to \mathbb{R}^+$. Also, for each $n \in N$ (positive integers)

$$V(n, k) = \{(J_1, J_2, ..., J_n): J_i \in A, i = 1, 2, ..., n\}$$

For an $a = (J_1, J_2, \dots, J_n) \in V(n, k)$ and $i \in I$ let:

$$a(i) = f_{J_1} \circ f_{J_2} \circ \cdot \cdot \cdot \circ f_{J_n}(i)$$

Further, let for $i \in I$ and $n \in N$:

$$Q(i, n) = \max \{q(a(i), r) : a \in V(n, k), r \in A\}$$

$$P(i, n, u, x) = \max \{p_{a(i)}(u-x) : a \in V(n, k)\}$$

and $Q(i, 0) = \max\{q(i, r) : r \in A\}, P(i, 0, u, x) = p_i(u - x) \text{ for every } i \in I.$

Now we shall prove a generalization of Theorem 1 from [1].

Theorem 1. Let $(E, \{p_i\}_{i \in I})$ be a sequentially complete locally convex space, $T: M \to C1(M)$, where M is a closed subset of E such that the following conditions are satisfied:

1. For every $u, v \in M$ and every $x \in Tu$ there exists $y \in Tv$ such that:

$$p_i(x-y) \leqslant \sum_{r=1}^k q(i, r) p_{f_r(i)}(u-v)$$
 for every $i \in I$

2. There exist $x_0 \in M$ and $x_1 \in Tx_0$ so that:

$$R = \sup_{i \in I} \overline{\lim}_{n \in N} \sqrt[n]{P(i, n, x_1, x_0)} \prod_{r=0}^{n-1} Q(i, r) < \frac{1}{k}$$

Then there exists at least one element $x \in M$ such that $x \in Tx$.

Proof; Let x_0 and x_1 be elements given by 2. It follows by 1. that there exists a sequence $\{x_n\}_{n\in\mathbb{N}}\subseteq M$ such that:

- (i) $x_{a+1} \in Tx_a$ for each $n \in N \cup \{0\}$
- (ii) For each $i \in I$ and $n \in N$:

$$p_i(x_{n+1}-x_n) \leqslant \sum_{r=1}^k q(i, r) p_{f_r(i)}(x_n-x_{n-1})$$

Now, for any $i \in I$ and $n \in N$ it follows by (ii) that:

$$\begin{split} P\left(i, \ n, \ x_{m+1}, \ x_{m}\right) &= \max \left\{ p_{a(i)}\left(x_{m+1} - x_{m}\right) : a \in V\left(n, \ k\right) \right\} \leqslant \\ &\leqslant \max \left\{ \sum_{r=1}^{k} q\left(a\left(i\right), \ r\right) p_{f_{r} \circ a(i)}\left(x_{m} - x_{m-1}\right) : a \in V\left(n, \ k\right) \right\} \leqslant \\ &\leqslant k \ Q\left(i, \ n\right) P\left(i, \ n+1, \ x_{m}, \ x_{m-1}\right) \end{split}$$

Consequently for any $i \in I$ we have:

$$p_i(x_{n+1}-x_n) = P(i, 0, x_{n+1}, x_n) \le k^n \prod_{r=1}^n Q(i, r-1) P(i, n, x_1, x_0)$$

and because $R < \frac{1}{k}$ the series $\sum_{r=1}^{\infty} x_r - x_{r-1}$ is convergent. So there exists $x^* = \lim_{n \to \infty} x_n \in M$ and it remains to prove that $x^* \in Tx^*$. In order to prove this, we apply the condition 1. where $u = x_n$, $v = x^*$, $x = x_{n+1} \in Tx_n$. Then there exists $b_n \in Tx^*$, for every $n \in N$, such that for every $i \in I$ the following inequality holds:

(1)
$$p_i(x_{n+1} - b_n) \leqslant \sum_{r=1}^k q(i, r) p_{f_r(i)}(x - x^*)$$

So from the relation $\lim_{n\to\infty} x_n = x^*$ and (1) we conclude that $\lim_{n\to\infty} p_i(b_n - x_{n+1}) = 0$ for every $i \in I$ which means that $\lim_{n\to\infty} b_n = \lim_{n\to\infty} x_n = x^*$. For every $n \in N$, $b_n \in Tx^*$ and so $x^* \in \overline{Tx}^*$. Since $Tx^* \in C1$ (M) we have $Tx^* = \overline{Tx}^*$ which completes the proof.

Remark: It is easy to see that for every $i \in I$ we have:

(2)
$$p_i(x^* - x_0) \leq S(i, x_1, x_0)$$
 where:

$$S(i, x_1, x_0) = P(i, 0, x_1, x_0) + \sum_{n=2}^{\infty} k^{n-1} P(i, n-1, x_1, x_0)$$
$$x \prod_{r=0}^{n-2} Q(i, r)$$

The inequality (2) will be used in the proof of Theorem 3.

Theorem 2. Suppose that E, T, M, f_r (=1, 2, ..., k) and q are as in Theorem 1 and that the condition 1. in Theorem 1 is satisfied. Further, suppose that for every $i \in I$ and $n \in \bigcup \{0\}$ there exists $c_n(i) \geqslant 0$ and $g(i) \in I$ so that:

$$p_{a(i)}(x) \leq c_n(i) p_{g(i)}(x)$$
 for every $x \in E$

and every $a \in V$ (n, k) and:

$$\sup_{i \in I} \overline{\lim}_{n \in N} \sqrt[n]{c_n(i)} \prod_{r=0}^{n-1} Q(i, r) = \frac{1}{k}$$

If M is convex and sequentially compact there exists at least one element $x \in M$ such that $x \in Tx$.

Proof: For every $n \in N$ we shall define the mapping $T_n: M \to C1(M)$ in the following way:

$$T_n x = \lambda_n Tx + (1 - \lambda_n) x_0$$
, for every $x \in M$

where x_0 is an arbitrary element from M and $\{\lambda_n\}_{n\in N}$ is a sequence of real numbers from (0, 1) such that $\lim_{n\to\infty} \lambda_n = 1$. Since M is convex, we have $T_nx\in M$ for every $n\in N$ and every $x\in M$. Also, $T_nx\in C1$ (M) because $Tx\in C1$ (M) and E is a topological vector space. We shall show that the mapping T_n , for every $n\in N$, satisfies all the conditions of Theorem 1. Let $u, v\in M$ and $x\in T_nu=\lambda_n Tu+(1-\lambda_n)x_0$. Then $x'=\frac{x-(1-\lambda_n)x_0}{\lambda_n}\in Tu$. Since the mapping T satisfies the condition 1. of Theorem 1 there exists element $y\in Ty$ so that for every $i\in I$ we have:

$$p_i(x'-y) \leqslant \sum_{r=1}^k q(i, r) p_{f_r(i)}(u-v)$$

namely that:

$$p_i\left(\frac{x-(1-\lambda_n)x_0}{\lambda_n}-y\right) \leqslant \sum_{r=1}^k q(i, r) p_{f_r(i)}(u-v)$$

From this it follows that:

$$p_i(x - ((1 - \lambda_n) x_0 + \lambda_n y)) \le \sum_{r=1}^k \lambda_n q(i, r) p_{f_r(i)}(u - v)$$

where $(1 - \lambda_n) x_0 + \lambda_n y \in T_n v$. Further we have for every $n \in N$:

$$R_n = \sup_{i \in I} \overline{\lim_{m \in N}} \sqrt[m]{P(i, m, x_1, x_0)} \prod_{r=0}^{m-1} Q_n(i, r) \le$$

$$\leq \sup_{i \in I} \overline{\lim}_{m \in N} \sqrt[m]{c_m(i) \lambda_n^m \prod_{r=0}^{m-1} Q(i, r)} \leq \frac{1}{k}$$

where $Q_n(i, m) = \max \{\lambda_n \ q \ (a \ (i), \ r) : r \in A, \ a \in V \ (m, k)\}$ for every $m \in N$ and $Q_n(i, 0) = \lambda_n \max \{q \ (i, r) : r \in A\}, \ x_1 \in T_i x_0$. So for every $n \in N$ there exists $x_n \in M$ such that:

$$x_n \in T_n x_n = \lambda_n T x_n + (1 - \lambda_n) x_0$$
.

Since the set M is a sequentially compact subset of E there exists a subsequence $\{x_n\}_{n\in\mathbb{N}}$ of the sequence $\{x_n\}_{n\in\mathbb{N}}$ such that $\lim_{k\to\infty}x_{n_k}=x^*$. It remains to prove that $x^*\in Tx^*$. From $x_n\in T_nx_n=\lambda_nTx_n+(1-\lambda_n)x_0$ it follows that:

$$\frac{x_n - (1 - \lambda_n) x_0}{\lambda_n} \in Tx_n.$$

Now, if we apply the condition 1 of Theorem 1 where:

$$u = x_n, \ v = x^*, \ x = \frac{x_n - (1 - \lambda_n) x_0}{\lambda_n}$$

it follows that there exists element $b_n \in Tx^*$, for every $n \in N$ such that for every $i \in I$ the following inequality holds:

$$p_{i}\left(\frac{x_{n}-\left(1-\lambda\right)x_{0}}{\lambda_{n}}-b_{n}\right)\leqslant\sum_{r=1}^{k}q\left(i,\ r\right)p_{f_{k}\left(i\right)}\left(x_{n}-x^{*}\right).$$

Since $\lim_{k\to\infty} x_{nk} = x^*$ we have that $\lim_{k\to\infty} b_{nk} = \lim_{k\to\infty} \frac{x_{nk} - (1 - \lambda_{nk})x_0}{\lambda_{nk}} = \lim_{k\to\infty} x_{nk} = x^*$.

So we have $x^* \subset Tx^* = \overline{Tx^*}$.

If we have a family of multifunctions $\{F_{\lambda}\}_{\lambda\in\Lambda}$, where Λ is a topological space, such that for every $\lambda\in\Lambda$ there exists a fixed point x_{λ} of the mapping F_{λ} i.e. $x_{\lambda}\in F_{\lambda}x_{\lambda}$ it is of interest to investigate "the continuous dependence" of the fixed point x_{λ} on parameter $\lambda\in\Lambda$. Here "the continuous dependence" of the fixed point x_{λ} on parameter $\lambda\in\Lambda$ means that for every $i\in I$, every $\varepsilon>0$ and every $\lambda_0\in\Lambda$ there exists a neighbourhood $V(\lambda_0, i, \varepsilon)$ of λ_0 such that for every $\lambda\in V(\lambda_0, i, \varepsilon)$ there exist $x_{\lambda}\in F_{\lambda}x_{\lambda}$ and $x_{\lambda_0}\in F_{\lambda_0}x_{\lambda_0}$ such that

$$p_i(x_{\lambda}-x_{\lambda_0})<\varepsilon$$

Definition. Let Λ be a topological space, E be a locally convex space, M be a subset of E and for every $\lambda \in \Lambda$, $F_{\lambda}: M \to 2^{E}$. We write $F_{\lambda} \xrightarrow{w} F_{\lambda}$, when $\lambda \to \lambda_{0}$ iff the following condition is satisfied:

For every $x \in M$, every $i \in I$, every $\varepsilon > 0$ and every $z \in F_{\lambda_0} x$ there exists a neighbourhood V of λ_0 such that:

$$F_{\lambda} \times \cap W \neq \varnothing$$
 for every $\lambda \in V$

where $W = \{u : p_i(u-z) < \varepsilon\}.$

For singlevalued mappings $F_{\lambda} \xrightarrow{w} F_{\lambda_0}$ when $\lambda \to \lambda_0$ if $\lim_{\lambda \to \lambda_0} F_{\lambda} x = F_{\lambda_0} x$ for every $x \in M$.

If $f_{r,\lambda}: I \to I$ for every $r \in A$ and $\lambda \in \Lambda$ we shall denote $f_{J_1,\lambda} \circ f_{J_2,\lambda} \circ \cdots f_{J_n,\lambda}(i)$ by $a_{\lambda}(i)$ $(a = (J_1, J_2, \ldots, J_n \in A)$ for every $\lambda \in \Lambda$. Further if $q_{\lambda}: IxA \to R^+$ we shall use the notation:

$$Q_{\lambda}(i, n) = \max \{q_{\lambda}(a_{\lambda}(i), r) : a \in V(n, k), r \in A\}$$

$$Q_{\lambda}(i, 0) = \max \{q_{\lambda}(i, r) : r \in A\}$$

$$\overline{Q}(i, n) = \max_{\lambda \in \Lambda} Q_{\lambda}(i, n).$$

Now, we shall give a sufficient condition for continuous dependence of the fixed point x_{λ} of the mapping F_{λ} on parameter $\lambda \in \Lambda$.

Theorem 3. Suppose that E and M are as in Theorem 1 Λ is a topological space, $F_{\lambda}: M \to C1(M)$ for every $\lambda \in \Lambda$ and $F_{\lambda} \to F_{\lambda_0}$ if $\lambda \to \lambda_0$ for every $\lambda \in \Lambda$. Further suppose that for every $\lambda \in \Lambda$ the mapping F_{λ} satisfies the condition 1. of Theorem 1 and that the following two conditions are satisfied:

(i) $p_{a\lambda(i)}(x) \leq c_n(i) p_{g(i)}(x)$ for every $i \in I$, $n \in N$, every $x \in E$, every $\lambda \in \Lambda$ and every $a \in V(n, k)$

(ii)
$$\sup_{i\in I} \overline{\lim_{n\in N}} \sqrt[n]{c_n(i)} \prod_{r=0}^{n-1} \overline{Q}(i, r) < \frac{1}{k}.$$

Then for every $i \in I$, every $\varepsilon > 0$ and every $\lambda_0 \in \Lambda$ there exists a neighbourhood $V(\lambda_0, i, \varepsilon)$ of λ_0 so that for every $\lambda \in V(\lambda_0, i, \varepsilon)$ there exists a fixed point x_λ of the mapping F_λ and a fixed point x_{λ_0} of the mapping F_{λ_0} such that:

$$p_i(x_{\lambda}-x_{\lambda_0})<\varepsilon$$

Proof: From the conditions (i) and (ii) it follows that for every $\lambda \in \Lambda$ there exists a fixed point x_{λ} of the mapping F_{λ} and $x_{\lambda} = \lim_{n \to \infty} x_{n,\lambda}$, $x_{n,\lambda} \in F_{\lambda} x_{n-1,\lambda}$ where $x_{0,\lambda}$ is an arbitrary element from M and $x_{1,\lambda}$ is an arbitrary element from $F_{\lambda} x_{0,\lambda}$. Let $x_{0,\lambda} = x_{\lambda_0} \in F_{\lambda_0} x_{\lambda_0}$ for every $\lambda \in \Lambda$. Then we have from inequality (2):

$$p_i(x_{\lambda}-x_{\lambda_0}) \leqslant p_{g(i)}(x_{1,\lambda}-x_{\lambda_0}) \left(c_0(i)+\sum_{s=1}^{\infty}c_s(i)k^s\prod_{t=0}^{s-1}\overline{Q}(i,t)\right)$$

where $x_{1,\lambda} \in F_{\lambda} x_{\lambda_0}$. Let us denote $c_0(i) + \sum_{s=1}^{\infty} c_s(i) k^s \prod_{t=0}^{s-1} \overline{Q}(i, t)$ by M(i). Now we shall use the Definition where:

$$x = x_{\lambda_0}$$
 and $z = x_{\lambda_0} \in F_{\lambda_0} x_{\lambda_0}$

Then there exists a neighbourhood V of λ_0 such that:

$$F_{\lambda} x_{\lambda_0} \cap W \neq \emptyset$$
 for every $\lambda \in \Lambda$

where $W = \left\{ u : p_i (u - x_{\lambda_0}) < \frac{\varepsilon}{M(i)} \right\}$. This means that there exists $x_{1,\lambda} \in F_{\lambda} x_{\lambda_0}$ such that:

$$p_i(x_{1,\lambda}-x_{\lambda_0}<\frac{\varepsilon}{M(i)}$$

and so $p_i(x_{\lambda}-x_{\lambda_0})<\varepsilon$ for every $\lambda\in V$, every $i\in I$ and every $\varepsilon>0$.

REFERENCES

- [1] O. Hadžić, B. Stanković. Some fixed point theorems in locally convex spaces, Publ. Inst. Math. T 10 (24), Beograd 1970, 9-19.
- [2] O. Hadžić Dj. Paunić A theorem on the fixed point in locally convex spaces, Publ. Inst. Math., T 20 (34), 1976, 111—116.
- [3] I. Barbulescu, Über einen Fixpunktsatz für Multiabbildungen in uniformen Räumen, Anale Math. fiz. Chim., Electrotehn. Univ. Craiova, Ser. A. 2., 1973, 73—77.
- [4] Teck-Cheong Lim, A fixed point theorem for multivalued non-expensive mappings in a uniformly convex Banach space, Bull. Amer. Math. Soc. v. 80. N. 6, 1974. 1123—1126.

Olga Hadžić 2 1000 Novi Sad Jovana Subotića 7 Jugoslavija