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The investigation of the spectral properties of graphs formed by a given
operation from simpler graphs is a problem of some interest in graph theory.
[1—4, 8] In the present work the characteristic and acyclic polynomials will be
determined for certain types of compound graphs.

The characteristic polynomial [2] of a graph G will be denoted by
@ (G)=® (G, M. The acyclic polynomial « (G)=« (G, 2) of a graph G is defined
in [6]. Our notation and terminology completely follows that of [6] and will
not be introduced here once again.

Let P, be a path with k vertices v, v,, ..., v, such that v; and v,
are adjacent (j=1,2,..., k—1). Let further the edge connecting the vertices

v; and v, be denoted by e;.
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Figure 1

An edge e in a graph G is called a bridge if G—e has more components
than G.

Definition 1. A graph Q, belongs to the class Q, if, and only if it
contains P, as a subgraph and if its edges e; are bridges for all j=1.2,..., k1.
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Consequently, every graph with at least one vertex belongs to Q,; every
graph with a bridge belongs to Q, etc. In the general case, a graph from Q,
has the following structure.
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Figure 2
A,, 4,, ..., A, symbolize arbitary, mutually disconnected subgraphs. Hence
Q, can be understood as being composed of the fragments A, 4,, ..., A.

The path P, is now a special case of a graph Q.. The subgraph obtained by
deletion of the vertex v; from 4; will be denoted by B;.

The fact that two graphs Gl and G, arc isomorphic is written as G, =G,.

Definition 2. A graph R, belongs to the class R, if, and only if
RcQuand 4,=4,=-..=4,_,and B,=B,=-..- =B, _,. A graph R; belongs
to the class Rk if, and only if Ri~R, and Ak~Ak , and B,=B,_,. A graph
S, belongs to the class S, if, and only if S, &R; and 4,=4, and B,=B,.

Of course, it is S, CRiCR,CQ, and the graphs R,, R; and Sk are
special cases of graphs Q. In the following, the mutually isomorphic sub-

graphs 4; and B, contained in the graphs R,, R; and S, will be denoted simply
by A and B.
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Figure 3

The characteristic polynomials of graphs Q,, R, and S,

Since e,_; is a bridge, the characteristic polynomial of @, fulfils the
equality [5]

0)) D(Q)=DP(Qr—ex_) —DP(Qi—(ex)
ie.

0 D (Q1) =P (4 P (k) — P (B_)) D (B) @ (Qi—r)
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This latter recursion relation can be written in a matrix form as
[ D (Q0) ]:[(D(Ak) —¢>(Bk)] [ D (Qr_1) ]
@ (B P (Qr—y) ®@By O D (Bi_)) P (Qk-r)
A repeated application of eq. (3) leads immediately to the following result.

3

Theorem 1.

® Q) 1]
4 =T, Ty, - T,T
) [¢w»¢@ho} Lo 2‘[0
where
ﬂ:[¢up—nw&quhzwu,k
®B) O

Corollary 1.1. The characteristic polynomial of Q, is completely de-
termined by the characteristic polynomials of A; and B;(j=1,..., k). This
implies the existence of numerous pairs (triplets etc.) of nonisomorphic isospectrai
graphs in the class Q, (k=2).

A simple example is the pair G’ and G"'. Note that according to Defini-
tion 2, both G’ and G” belong to the class S,.

T
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Figure 4

Corollary 1.2,

To [P ]
@ (B) (KL 0

ol
| ©(B) ©(Sk-,) 0

" ®(4) — @ (B)
| © (B) 0 ]

where

T=

Corollary 1.3.
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A result of the form (4) was recently obtained by Kaulgud and Chit-
gopkar. [7]

The above defined and investigated graphs are special cases of so called
“rooted products®“. [4] In particular, Q, is the rooted product of P, with the
sequences of graphs 4, 4,, ..., 4,. Schwenk [8] and later Godsil and McKay
[4] found general expressions for the characteristic polynomials of rooted pro-
ducts. Our results, on the other hand, emphasize certain special properties of
the rooted products of a path, which were not considered previously.

In the special case of graphs S,, eq. (2) is written as
) D(S)=P(A) P(Si_) —DP(B)? D(S;_y)

Theorem 2. A recursion relation of the form (5) holds for all R,ER,,
namely

(6 @ (R) =P (A) ©(R,_))—P(B) P(R_))

Proof. According to (2) and Definition 2 we have
@ (R =D (4,) D (Ri)~ P (B) P (By) @ (Ri o) =

=D (4)) [P (A) P (Rk-2) ~ D (B)? ®(Ri_3)]—
— @ (B) ©(BY [P (4) D (Ri—3) - P (B)* D (Ri—s)] =
=0 (A4) [D(4) P(Ri_2)— D(B) D(B,) D (Ri_3)]—
= ®(B)? [P (4,) P (Ri—3)—~ P (B) P (B)) ®(Ri-9)]=
=®(4) P(R,_)—D(B)? (R, _,).

From eq. (6) it follows

@) D (RY=C, (1) +C, (t,)*

where ¢, and ¢, are the solutions of the equation 2= ® (4) r — ® (B)2. By setting
D (A)=2 P (B)cosH, one gets #;,, =D (B) exp (£ i0), which substituted back into
(7) gives the general expressions for @ (R,) and @ (S)).

Corollary 2.1. For all R,ER, it is

sin(k—l)ﬁ_

® D (R) =D (R) ®(B)—? -
sin 0

—(D.(R) ® By sin (k—2)0
! sin 0
while for all S, &S, it is

X sin(k+1)0

) O (S,)=D (B .
. sin 0
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Note that (9) is obtained from (8) because of ®(S)=®d(4), P(S,)=
=@ (42—~ ® (B)* and @ (4)=2 P (B)cosl. Combination of (8) and (9) yields
finally

(10) @ (R)=DP(R) ©(S5;_)=P(R) D(B) P(S,.3)

Corollary 2.2. If the subgraph A possesses exactly one vertex, then we
have © (A)=x, ® (B)=1 and (6) becomes ® (R)=1D (R,_)— P (R,_,).
Equation (9) gives the well known relation [2] ® (P, 2cosB)=sin(k+1)0
/sinB, while eq. (10) reduces to @ (R) =D (R,) ®(P,_,) —P(R) P(P,_,).
These special cases of Theorem 2 were proved in [5].

The following formulas can be checked by straightforward application of
Theorem 2.

Corollary 2.3. Let r,=®(R)>*~ D (R,_,) P(R,.,) and 5, =D (5)*—
—D(S,_) DS, ) Then

re=®(B)Yr_; re=®(B2E Dy,
Si=®(B)Ys;_q; 8= (B)*

The latter equality is a consequence of s,=® (B)*

. X .
Because of the identity M= 2% ]_[ (cosﬂ — cosf»jj-) , €. (9) is
sin 0 j=1 k+1
further transformed into
k J T
(11) <I)(Sk)=n (D(A)—ZG)(B)cosk——]}
i=1 -

Formula (11) was obtained by Schwenk [8] and recently also by Godsil
and McKay [4], but using a different way of reasoning.

The acyclic polynomials of graphs Q,, R, and S,
The acyclic polynomial fulfils the recurrence formula [6]
a(G)=a(G~e)—a(G-—(e)

where ¢ is an arbitrary edge of an arbitrary graph G. Therefore also «(Q,)
obeys the relation

(12) a(@)=0o(Qr—e,_)—a(Qy—(e,_)

which is fully analogous to eq. (1). Since all the statements obtained in the
previous section are consequences of eq. (1), a completely equivalent reasoning
based on eq. (12) leads to the same results also for the acyclic polynomial.
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Hence, all equations, theorems and corollaries of the preceeding section remain
valid if the term ’characteristic polynomial, ®¢ is substituted by *‘‘acyclic
polynomial, «‘‘. In particular, identity (11) is now reformulated as follows.

Theorem 3a. The set of all zeros of the acyclic polynomial of a graph

S &Sy is composed of the solutions of the equations o (A)=2 o (B)cos /;]—n—l Sor
+
j=1,2,..., k.

The characteristic and acyclic polynomials of graphs U,

Definition 3. A graph U, belongs to the tlass U, if, and only if it is
obtained from a graph S, €S, by intrcducing a new edge between the vertices
v, and v,.

Note that the cycle C, with k vertices is a special case of the graphs
Uy. The general form of a graph U,=U, is the following.

Uk

Figure 5

The characteristic and acyclic polynomials of the graph U, fulfil the
relations [2, 6]

(13) DU, =D (S~ D (B DS, )2 (B
(14) % (U,) =% (S,) — o (B)? o (S,_,)
Therefrom one can determine the following recursion formulas. |
DU +2P(B)=®A)[D U, )+2D (B 1]
— D (B [® (U,_,) +2 D (B)~7]

aU)=a(d) aU)—a(B)? a(U,_,)
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These have the same structure (and therefore also the same consequences)
as eqs. (5) and (6). The general form of ® (U,) and « (U,) can be deduced by
combining eqs. (13) and (14) with (9).

k

(15) @ U =2 O (B)(coskb—D=]] [op (4) -2 ¢(B)cos3£1]

Jj=1

@ (U =2 a(B)kcoske=ﬁ [oc (A)— 2 « (B) cos (.ZJi]:ﬂTf]

j=1

Equation (15) was also derived by Schwenk by means of different methods.

Theorem 3b. The set of all zeros of the acyclic polynomial of a graph
2
U,&U, is composed of the solutions of the equations o (A)=2 o (B) cosL—J—ﬁ*_—l—)—717
for j=1,2,..., k.
We conclude this work with two propositions which reflect certain algeb-

raic properties of the characteristic polynomials of matrices and graphs. Both
are simple consequences of eqs. (11) and (15).

Let M be a symmetric square matrix with real (but arbitrary) elements.
Let M, be the submatrix obtained by deletion of the j-th row and the j-th
column from M. Let ® (M) and @ (M,) be the characteristic polynomials of
M and M;.

Proposition 1. For a and b being arbitrary integers (b#0), all so-
lutions of the equation ® (M)=2 © (M) cosfz—bE are real.

Let G be an arbitrary graph and G- v the subgraph obtained by deletion
of the vertex v from G.

Proposition 2. For a and b being arbitrary integers (b+#0), all so-
lutions of the equation ® (G)=2 @ (G —v) cos‘}-bE belong to the spectrum of

some graph.
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