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Let #=(4, U, N,->, —) be any pseudo-Boolean algebra, in which the
operations |, M, - and — are defined as in [1]; denote by @ and Q,
the minimal and maximal elements in A, respectively, and by < the ordering
relation in 4 (note that a<<b has the same meaning as b>a). The pseudo-
-difference of elements a and b from A4, which will be denoted by a-*b, we shall
define by the equality

atb=aN —b
(we always assume that the sign ,,—‘ binds more strongly than ali the other
signs); the pseudo-difference exists for all a, b& 4. It is easy to see that the
equalities :
Q*a=a> 2 =—a
hold for each ac A.

Lemma 1. In the pseudo-Boolean algebra the following statements are valid:
(1) (@Ub*ec=(a*)Ud™o),
")y (@aNb)Ec=(@*)Nb=(bLc)Ng;
()  (cFay*b=c*(aLb),
2" (c*a)U(crb)<ct(and);
3 arb~b*t —g
4) (arb)rc=(a*c)*b,
@4 ar(bro=(@*b)U(a*—rc);
4 a—-b=Q if and only if a*b= g;
(6)  If a<b, then the equality b*a= @ holds if and only if —a= —b,
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(6") a*b=b*a= o if and only if —a= —~b;

@) If a<b and b*a= @, then c*a=c*b for any c=b;
) ~(@nby*(—aU —-b)= o;
€)] Let b<<a and a*b=c; if a*c=d, then b<{d and d*b= g,

(10) (@*(@anb)*(a*b)= o;
(1 —(@e=>bu@b)= 2.

(1) and (1") follow immediately from the definition of * and the fact
that every revatively pseudo-complemented lattice is distributive.

(2" follows from (¢ —a)\ —b=cMN —(aUb), and (2") from (cN —a)U
UleN —b)=cN(—ayU —b)<cn —(anb).

Since a<{ — —a, we have —b* —a=-b\— —a>—-bNa=a*b, and (3)
is proved.

(4') follows from (2’), and (4"') is evident.

It is known that the equality a—>b=C holds if and only if a<b: but,
it is eascy to see that the last relation is equivalent to a-*-b= &, which proves (5).

Proof of (6'). Note that from a<b it follows —a> —b. Ilf b*a= g,
then —a<< — b, which, together with —a> —b, means that —a= —b. If —a= —b,
then b\ —a=b" —b= @, or, equivalently, b-*a= o.

It is easy to see that (6'') is true.

(7) is the consequence of (6°).

Proof of (8). Put —(anb)*(—al—b)=c, and prove that c=g; ¢
satisfies the relations

(12) e —(anb),
(13) cN(—auU~-b)=o.

From (12) it follows ¢\ — —(aM\b)= @ . But, from (13) it follows ¢ —a=
=c¢(\ —b= g, which implies ¢ — —a, ¢c<— —b. If cNa=g (or cNb= @),
then it means that ¢<< — a (¢ << — b) which, together with ¢ —a= & (cN ~b= @),
gives c= @. Suppose that cNa+# @, cNb+# o, and put ¢, =ca; it must be
(because of ¢ (aNb)= o) ¢,Nb= o, and hence ¢,< —b. But, from ¢,<c and
¢ —b= g it follows ¢, —b= o, which, together with ¢, < —b, gives ¢ =
= ¢, contrary to our assumption. The proof is completed.

Proof of (9). We have d=an —c=aN —(aN —-by=an(—aUb)=b.
Let us put d*b=e; then e<d and e\b= @, which, respectively, means that
e<a, e< —c and e —b. From the first and third of these relations it follows
that e<a —b=c, which, together with e<—c¢, means that e=g, as we
wanted to prove.
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Proof of (10). We have
(a*(aMb)*(a*b)=(a*(a-*b)*(aNb)< —(aNb)* — (a*(a*b) =
= —(@Nb*—(aN ~(a*b) =~ (@Nb)*(-aU—- —(@n-b)=
= —(@NB)*(~aU - (~aU - —B) = — @Nb=(-aU(~ —an —b) =
= —(@Nb)*(-aU —(-aUb)= —(@Nb)* —(@N(-aUb)= o,
from which it follows that (10) holds.

Proof of (11). It is known that in pseudo-Boolean algebra a—>b can
be defined by a—>b= —alUb. Let us put — ((a—b)\(a*b))=c and prove that
c= . By a simple transformation ¢ can be written in the form c=(— —a) —
by —(aN —b), which is equivalent to c<<{— —aN —b and c< - (aN —b).
From the last two relations it follows ¢<{— —a, ¢<<—b, cN@N—-b)= .
Hence cNa= @, i.e., ¢< —a, which, together with ¢ — —a, gives c< —anN
— —a= . Hence c=g.

Lemma 2. The following statements are valid:
(14) If as<b<c and b*a=c*b= @, then c*a= g;
(15) Let a<band b*a= @; if cis such that a<c<b, then c*a=b*c= .

Proof of (14). Let c*a=d; then d<c and dNa= o. Put d,=bNdj
since d,<{b*a, it must be d,= . Hence b\d= o, i.e., d<c*b, which im-
plies d= @, as we wanted to prove.

Proof of (15). It is clear that c*a<b*a and b*c<{b*a. From the
hypothesis ¢*a> @ or b*c> » it follows b*a> @, which contradicts our
assumption,

Let a and b be arbitrary elements from A. We shall say that a and b
are equivalent, and we shall write a~b, if a2b=b*a= g.

Lemma 3. The relation ~ is an equivalence relation.

Proof. We must prove that the relation ~ is reflexive, symmetric and
transitive. It is evident that ~ has the first two properties. Let us show that,
if a~b and b~c, then a~c. Since a~c is equivalent to a*c=c*a= g, we
shall prove only the first of these equalities, because the proof of the second
is analogous. Put a*c=d. If dN\b> @, dNb# @, then, by reason of dNb<
<b*c, it follows b-*c> &, b*c+#b, which contradicts the assumption b~c.
Hence dNb= @, ie., d< —b. Since d<(a, it follows that d<{a*b, which is
possible only in the case d= @. The proof is completed.
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Lemma 4. Suppose that a, b, ¢, d are from A and that a~b, c~d. Then

(16) —a~ —b;

a7 alJc~b\d,
(18) aNce~bNd,;
(19 a—>c~b—d,
20) a*c~b2d,

Proof of (16). The condition a~b is equivalent to a*b= ¢ and
b*a= ¢, from which it follows a<{ — —b, —a<{~—b. Hence —aN\—~ —b= g,
or, equivalently, —a* —b= @. Similarly we can show that —b-*-—a= g, which
means that —a~ —b.

Proof of (17). We have
(U2 Ud)=(a N —dud)y=@ionN(-bN-d)=
=({(aUoN -bN —d=(cN-b)N—-d=(cN-dN—-b=o.
By similar way it can be shown that (bUd)*(aUc)= o.

Proof of (18). We have, by reason of (6'),
@y (@ng*GNd)=@noN— - —GNd)=(ano*~(-bU —d).

But, from (16) it follows that —a~ —b and —c~ —d, which, because of (17),
means that —alJ —¢c~—5b'J —d. From (21) and the last relation, for (6''),
we obtain

(22) (ano)*GNd)=@nNo* —(—-al —c)=
=@No* (- —an - -9<@nNg*@neg= 2.

By similar way it can be shown that (b(\d)*(aNc)= o .
(19) and (20) are evident consequences of (16), (17) and (18).

Denote by E the set of all equivalence-classes of 4: E=A4/~. The equi-
valence-class which is generated by a, ac A4, we shall denote by |a| If |a]
and |b| aie arbitrary elements from E, then we shall say that |a| is not
greater than |b], and we shall write |a|<|b| or |b|>|al, if a<b for any
acla| and any b<|b|. The operations U, N, —, —, * in E we shall define
obviously: |alU)|b|=|aUb|, |a|N|b|=]anb]|, |a|—>|b|=|a—b|, —|a|=|-a
|a]*|b|=|a*b|. From Lemma 4 it follows that all these operations are well
defined.

It is easy to see that e=(E, \U, M, —) is the Boolean algebra. Indeed,
for any |a|€E we have — —|a|=|— —a/, but from — —g*g= g and a-*~ —
—a=g, it follows |~ —a|=|a]|, ie., — —|a|=|a| for any |a| from E.

»
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Let us define on A the function p with the following properties:

D p(a)y=0 for each ac A;

dn P(=1;

(I11I) pala,U- - -Ua)= ip(a,-) for each bositive integer n, and any
a,..., a,&A such th;cla,.maj= @, £

(Iv) if a<Ch, then p (@)<p (b).

Lemma 5. The function p has the following properties:
(23) p(@)=0;
(24) if a<h, then p (b-*a)<p (b)) —p (@);
(25) p@Ub)y=p(a*b)+p(b-*a)+p(and).

From g UQ=Q and g NQ= o, by reason of (Il) and (III), it follows
p(2)+1=1, which gives (23).

From (b*a)Na= o and aU@*a)<<b, by reason of (IlI) and (IV), it
follows (24).

Proof of (25). From a*b<a and b*a<bh it follows
(26) (@b Jb*aUanb)<Lalb.

From the definition of the operation *- it follows (a*-b)N\b= &, braNa= o,
and hence (a*b)N(aNb)= o, (b*a)N(aNb)= o. Also, we have (a*b)N
N@*a) =@ -bHNGEN —a)=(@Nd)N\(-bN —a)=(aNb)N - (@Ub)= @ ,whi-
ch is, together with the previous two equalities, enough that from (26), by rea-
son of (II) and (IV), follows (25).

If a<<b and b*a= o, then the natural question is: Is there a reason
for the inequality p (a)<<p (b)? The following lemmas are in connection with
this question.

Lemma 6. If for arbitrary two elements a, b= A, such that a<<b and
b*a= 1, the equality p(a)=p (b} is satisfied, then for any a, b= A, such that

*

a*b=b"a= o, the equality p (a)=p(b) is satisfied.

Proof. From (10) and the assumption of Lemma we obtain a* (aNb)=
=b*(aMb)= @, which, by reason of a"\b<{a, anb< b, implies p (a)=p (aNb) =
=p(b), as we wanted to prove.

Lemma 7. The following statements are equivalent:

27 For any a, b A, if a<b, b*agz, then p(a)=p (b);
(28) The equality p(a)+p(—a)=1 holds for any a=A;
(29 If a, b& A, a<h, then p(b*a)=p (b)—p (a).
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Proof. Suppose that (27) holds, and prove (29). We have a! ) (b-*a)<b
and, by definition, b*(a\U(b-*a))= @, which, by reason of (27) and (III),
means that p (b)=p (a)+p (b-*a).

If (29) holds and a<(h, b-*a= o, then we have p (b-*a)=0=p (b)—p (a),
which means that (27) holds.

Suppose that (29) holds and put b=£; then we obtain p (—a)=1-p (a),
which means that (28) holds.

If (28) holds and a<b, b*a= @, then, by reason of (6’), —a= —b,
which means that p (@) =p (b).
Thus, we proved that the statements (27), (28) and (29) are equivalent.

Corollary. (IV) is the consequence of (27).

If (27) holds and if a, b are arbitrary elements from A such that a<b,
then from (27) it follows that p(b)=p (b-*a)+p (a)=p (a), which proves (IV).

It is easy to see that, if some of the statements from the previous Lemma
holds, then the equality
(30) p(@Ub)=p(a)+p ) —p(anb)

holds for any a, b& 4. Namely, we have al((a\)b)*a)<<a\Ub and (alUb)*
*(aJ((@Ub)-*a))= @, which, together with (27), (IIl) and (1'), means that
plalUb)=p(a)+p (-*a). Hence, by reason of (10) and (29), p(b*a)=p(b*
(anb))=p®d)—p(anb), which, together with the previous equality, gives (30).

Suppose that the function p has the following property, which represents
a generalization of the property (III):

) If a, a,, ... €4 are such that gNa;=o for i#j, and |) =

i=1

=a,Ua,l) - - - exists, then p(U a;)= 2 p(a).
i=1

i=1

Lemma 8. Suppose that some of the statements from Lemma 7 holds.

If a,, a,, ... are elements from A, such that a,<a,< ...,

d

a; exists, then

ICs

T (s

ai) =limp (a,).
1

n—ro0

Proof. We have
a, U@ *>a)Uaa)U- - <\ a,

i=1
but, it is easy to see that (g,= @)

00

U a*(a,Ua,a)U(a;a)U - - )=

—

-

= U (@™ (a, U@, a)U@"a)u- - +))=

=1
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© o o i
*
={ (ai_ U (aj‘*—aj-l))< J <ai”*‘ U (ajiaj—l)>=
] i=1 =1

= CJ (“i" L‘) (a,*a; 1)) U (a,ﬂ (IW —(@N “a/—x)>=

i=1 J=1

=G h(am—(a,m- ) =) 7=

i=1

which, by reason of (27), means that

(31) p (C) a,.)= S p@*a.)=-lim S plata_)=

i1 i n>2 i

=lim P( Ln) (aiiai—l)) .

n—»o0 \j=1

By reason of
U ( ; 1) =g ]

from (31) it follows
p(Ua)=limp@,
i=1 n—»w
as we wanted to prove.
This Lemma shows that the function p, which has the additional properties
(II') and (27), is continuous with respect to the operation {J. In the following
example we shall see that it is not the case for the operation M.

Example. Suppose that 4 contains only the sets of the form a,=(0; s),
where s is an arbitrary real number from the interval (0; 1); put Q=(0; 1) and
—a,= » for each s. If we suppose that all the other operations are defined
in the usual way, then 4 becomes the pseudo-Boolean algebra with respect to
these operations. Suppose that the function p, which is defined on 4, has the
properties (I), (I[), (III') and (27). It is easy to see that it must be p(a)=1
for each 5. Consider the sequence a,, a,, ... , where a;=(0; l/i), i=1,2,...;
we have a,>a,>- .- and a a,= ¢, which means that p((uﬁ a,~)=0, but, by

i=1 i=1

reason of p(a)=1,i=1, 2,..., itis also lim p(a,)=1. Thusp(m a)<11mp(a)
n—»o0 i=1

It can be shown that from the continuity of p with respect to U it follows
the property (III') of p. More precisely, the following statament holds.

Lemma 9. If the statament from Lemma 8 is valid, then the statament
(1I") is also valid.

3%
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Proof. If a, a,, ... €4 are such that a;Na;= @ for i#j, and | Ja
=1

exists, then we define the new sequence b, b,, ... by
i
b= a, i=1, 2, ...;
j=1

this sequence satisfies all assumptions of Lemma 8, from which it follows that

P(O b,-)= lim p (b,). But, it is clear that ( j b= a;, which, together with

i=1 i=1 i=1

the previous equality, gives

p(g1 a,-)=p(® b,-)= lim p (b,)= lim p(é)l a,.)=

i=1 n—»oo n—»w
=lim 3 p(a)= 3 p(a),
nre o1 i=1

as we wanted to prove.

Suppose that the function p satisfies (I), (IT), (IT)) and (27). Then this
function has the same value on all elements of A4 belonging to the same
equivalence-class from E. Moreover, if we define the new function E on E by

p(la])=p(a) for any ac|a|, |a|EE,

then it is easy to see that p is the probability function on E.

It is known that for every pseudo-Boolean algebra /4 there exists a topo-
logical Boolean algebra %3=(B, \U, N, ), such that A=0c(B), where o (B)
denotes the set of all open elements in B, [l], (the sign - denotes the
complement in B). The interesting question is: if the function p is defined on
4, is there any probability function P on B, such that P(a)=p (a) for each
ac A? We shall give the answer to this question for the case when the topo-
logical Boolean algebra is formed in one special way. Namely, let 3= (B, UJ,
M, 7) be the topological Boolean algebra satisfying the following conditions
(see [1], p. 128):

(@) every element b& B is of the form
(32) b=(@,Ua)N - - - (i(a,Ua,),

where a;, a’,..., a, a, are elements from 4, n is arbitrary positive integer

and g; is the complement of g, in B. (Since every distributive lattice is isomorphic
to a set lattice, we can suppose that A is a lattice of subset of a set Q, which

implies that a is the ordinary set-theoretical complement of @ with respect to Q.)

(b) the interior operation in B is defined as follows: if b<B is of the
form (32), then

(33) b=(-aUa)N - -N(-a,Ua,),
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where —a; is, as above, the pseudo-complement of @; in 4. It can be shown
[1] that the equality A4 =0 (B) is satisfied.

Theorem. Let .4 be the pseudo-Boolean algebra and let on A4 the
function p, with the properties (I), (II), (III) and (27) is defined. Also, let B

be the topological Boolean algebra satisfying (a) and (b). The function P,
defined by

(34) P(b)=p(b), bEB,

is the probability function on B, i.e., the non-negative, normed and additive
function on B.

Proof. From (I) and (II) it follows that the function P is non-negative
and normed. Let us prove that it is additive. Suppose that &' and 3" are
arbitrary elements from B, such that b'(\b"' = ; these el_ements have forms

b =(@Ua )N - - (i(a,Ua,),
b = b, Ub)N < - (b Ub),
where a, a/’,..., a, a,/, b, b/,..., b, b, are from 4.We must prove that
(35) PB'Ub"Yy=P@®)+P((b").
It is easy to see that b\ b can be represented in the form
b Ub” = ((a,Nb) Ula/Ub) - - - (i@, Nby) U (e UB, NN - - - 1
N((@,NbYU(@@, UbNN - - - (@, 18, U (2, Uby ).
Hence, by reason of (34) and (33)

P Ub")=p(=(@Nb) U@, Ub NN - - - N(~ (@,Nbm) U (a, Ub, )]
It is easy to show that
(36) (= (@ NbY U@ Ub /NN - - - N(=@,Nb) U@, Uby)~
~({(—a, U -b)U (@' Ub NN - - - N({(~a,U = b)) U(a, Uby");

namely, we have, for (8),

~(a,.ﬂbj)~—a,-U~bj, i=1,..., n, j=1,..., m,
which, together with (17), means that

— (@) U(a Ub ) ~(—a,U —b)U(a; Ub)),

i=1,..., n, j=1,..., m,
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from which, by reason of (18), it follows (36). From the assumption (27) and
from (36) it follows

PO'UL)=p((—a,U -b)U(a/Ub N - - - N((—a,U - b)U(a,Ub, )]

But, the expression in the parentheses on the right side in the last equality
can be written in the following way:

(—=a,U =b)U(a/Ub NN - - - N((—a,U ~ b)) U (@, Ub, ) =
=[(-a,Ua )N+ - N(~a,Ja)UI(-b,Ub )N - - - N(=b,Ub, )],
which, together with (III) and the assumption &' M\b"' = @, means that the

equality (35) is satisfied.
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