PUBLICATIONS DE L'INSTITUT MATHEMATIQUE
Nouvelle série, tome 24 (38), 1978, pp- 19—28

ANTI — INVERSE SEMIGROUPS
Bogdanovi¢ Stojan, Mili¢ Svetozar, Pavlovi¢ Velimir

(Communicated January 5, 1978)

1. In [1] two theorems about anti-tegular semigroups were stated. Here
we prove that every anti-regular semigroup is regular (Corollary 2.1. (i)) and
in view of that fact suchlike semigroups we call anti-inverse. Theorems from
[1] we get here as corollaries of our theorems 2.1 and 2.2.

2. Two elements a and b from semigroup S are mutual anti-inverses if

aba=b and bab=a.

Definition 2.1. A semigroup S will be called anti-inverse if every
element from S has its anti-inverse element in S.

Example 2.1. By following tables

1) 1a b 2) |a b 3) |a b
ala a ala b ala b
b|b b blb b blb a

some anti-inverse semigroups are given. Thus in table 3) anti-inverse elements
for a are a and b, for b are a and b.

Let 4 denote the class of anti-inverse semigroups.

Theorem 2.1. Let S be a semigroup. Then
SEA & (VxES)AyaES) (3 =y yx=x>y, x*=x).

2%
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Proof. Let SE.4. Then for each xS there is its anti-inverse element
YES, so

2.1 xt=xx=(yxy) x=y (xyx) =yy =y

22 Yx=(xpx) (yxy) = x (yxy) xy = xxxy = x> y.
From (2.1) and (2.2) we have

2.3) X=yxy=x3yy=x3y2=x5

for every x&S.

Conversely, let for each xS, there is y&S which satisfies the condi-
tions of the theorem. Then we have

2.9) xpx=xx3y=x'y=p=y
2.5) yxy=x3yy=x’y?=x5=x.

It follows from (2.4) and (2.5) that x and y are anti-inverse elements.
This completes the proof of the theorem.

Corollary 2.1. (i) Every anti-inverse semigroup S is a regular semigroup.
(i) Each element in S has its own unity.
(iii) Anti-inverse elements from S have the same unity.

(V) If x*=e, (e, is x own unity), then the element x is permutable with
each of his anti-inverse elements.

(V) If x and y are mutual anti-inverse elements then x2y =yx? and xy* =) x.
(vi) If for x& S an anti-inverse element is y=S then so are also: xy, x2y, x3y.

(vii) Every anti-inverse semigroup S is an intra-regular semigroup.

Proof. (i) In an anti-inverse semigroup S is x>=x, for each x in S,
that is xx>x=x, so we have that for each x<S there is a—x* such xax=x.
Thus, S is a regular semigroup.

(i) From x°=x for each x in S we have (Vx&ES) (x*=¢,)

(iii) Let x and y be mutual anti-inverse elements, then x2=y? which yields
xt=y% ie e,=e,.

(iv) If y is anti-inverse element for x then yx=x3y=xy.

(v) If x and y are mutual anti-inverse elements then we have x?y =3 =
=yy?=yx2 Similarly, we get the other relation.

(vi) Let x and y be anti-inverse elements. Then, for s=1, 2, 3 we have
(xsy)z — xsyxsy_:yz = x2
() x=x*(px)=x" x> y = x* (x* y)

which means that x and x*y(s=1, 2, 3) are mutual anti-inverse elements.
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(vii) Since x2x2x=x for every x&S, § is an intra-regular semigroup
(for the definition intra-regular semigroup see [2]).

Theorem 2.2. Let S be a semigroup. Then
SEA < (VXxES)FyeS) (x2=)% x2=(xp)% ¥’ =X)

Proof. Let S&.4. Then, by Theorem 2.1 for every x&S we have
x5=x and for each y which is anti-inverse for x, we have x2=y2. Now let us
prove that (xy)>=x2. For anti-inverse elements x and y we have xyx =y, hence
by multiplying this equality by y from the right, we get xyxy=y?=x%

Conversely, from (xy)>=y?> by multiplying this equality by »* from the
right, we have xyxy*=yS5, whence, by using x>=)? we get xyx’=)° and, by
using (VxES) (x*=x) we have xyx=y. Similarly, from xyxy=x? we have
yxy=x, so x and y are mutual anti-inverse elements.

This completes the proof of the theorem.

By Table 1) in the example 2.1. anti-inverse semigroup which is not an
inverse semigroup is given. By Table 2) anti-inverse semigroup which is an
inverse semigroup but not a group is given. By Table 3) an example of a
group which is an anti-inverse semigroup is given. Consequently the class of
anti-inverse semigroups /4 does not include the class of inverse semigroups,
nor the class of groups, but the intersections of those classes are not empty.

Let A, denote the set of all anti-inverse elements of the element a of
the anti-inverse semigroup S.

Theorem 2.3.
aZd, > (Vx, ) (x, y&d, > xyEA).

Proof. Suppose that this is not true, i.e. a£4,, x, yEA, and xy&E 4,.
Then

@ = aaa = (xax) (yay) a= x (axya) ya = xxyya=a’=a.
This means that the element @ is its own anti-inverse i.e. a&=4, contradiction.
Theorem 2.4. Let x, y&A,. Then
ac A, and xy=yx < xyEA,.
Proof. Let acA, and xy=yx, then by Corollary 2.1. (iv) we have
(2.6) a(xy) a=axay = xy

2.7 (xy) a (xy) = xyayx = a.
From (2.6) and (2.7) we have xy& A4,.
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Conversely, let xycA4,, ie. a(xy)a=xy and (xp)a(xy)=a. Multiplying
the first of these relations by y from the right we get
2.8) axyay = xy*
Since a?=x2=y?, from (2.8) we have
(2.9) axa=x3.

From (2.9) we have x3=x, as a and x are mutually anti-inverse, whence,
multiplying that relation by x

(2.10) xt=x2=e,.

From (2.10) and using that the squares of the anti-inverse elements are
equal, we have

2.11) e,=xr=d’
As we have e,=e,, from (2.11) we get a’>=e,, so a’=a, i.e. ac 4,.
As we have

(2.12) (xy)i=a’=e,

and elements a, x, y, xy have the same unity, then multiplying (2.12) by yx
we get xy=yx.
This proves the theorem.

Theorem 2.5. Let S be anti-inverse semigroup. Then
(VxES) (A= 4x)
Proof. Let ac A,, then
(2.13) ax’ a=axxxa= ax (axa) xa = (axa) x (axa) = xxx = x3.
(2.14) x}ax’*=a.

From (2.13) and (2.14) we have that ¢ and x® are mutuall anti-inverse
elements i.e. a&E 4,3, So

2.15) A, CAss.

Conversely, let ac 4,3, then a?=(x%?=x?, and we have

(2.16) axa=(x*ax’)xa=xax*a=x’adta=xa?=x’=x
2.17) xax=x(x*ax’)=x*ax*=a*aa*=a

So
(2.18) ACA,.

From (2.15) and (2.18) the theorem follows.
The next two theorems are cited in [1]. Here are their statements,
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Theorem Let S be a semigroup. Each element of S has a unique anti-
-inverse element in S if and only if S is an idempotent semigroup (band).

Theorem Let S be a semigroup. Any two elements of S are anti-inverses
if and only if S is an abelian group in which each element is its own (group)
inverse.

Proof of the first theorem. Sufficiency. Let S be an idempotent se-
migroup, then each element x of § is its own anti-inverse. Let us suppose that
for x anti-inverse element is some ysx. Then x=x%?=y? (Theorem 2.1.) =y,
thus x=y contradiction.

Necessity. if y is the unique anti-inverse for x, then in virtue of the
Corollary 2.1. (vi) xy is also anti-inverse of x and so y=xy. Since x2=})?=
=(xy)? (Theorem 2.2.), then multiplying y=xy by y from the right we get
y>=xy? i.e. x2=x3 which by multiplication with x3 yields x*=x%x what in
view of x°*=x (Theorem 2.2.) yields the requested idempotency x=x2.

Proof of the second theorem. Let S be a semigroup in which any two
elements are mutually anti-inverse. Then, by Theorem 2.1. we have

Vx) (Vy) (®=y% yx=xy, x3=Xx)
whence, for x=y we have x2=x* i.e. x*=x, so
(V%) (VY y) (xy=yx).

Since (Y xES) (x*=e) (e is the unity, Corollary 2.1. (iii)) we have x®=x-! ie.
x=x"1
Conversely, as S is an abelian group in which x=x~!, we have

VxeS) (x?=e)
where e is the unity of the group S. Then

(Vx) (V) (> =y>=(xp)*=¢e)
and by Theorem 2.2. the proof is completed.
3. Let P be a non empty subset of a semigroup S. Let [P] denote the
subsemigroup of S generated by the set P.

Theorem 3.1. Let S be an anti-inverse semigroup and a<S. Then for
each subset I,CA,, GI,: =[a\Ul] is a subgroup of S.

Proof. If I,= @ and a 4,, then GI,=[a] is the cyclic group of order 4.

Let I, @ . For any element x of GI, we have x=a,a,- - -a,, for some
a,ca\Ul,. Let us prove that e,=x*=e,.
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First let us prove the following equality
2 4
(31) (al az' * .an) —anan—l. - .al (al aZ' ) 'an) anan—l' ' 'al
where a; from I, (i=1,2,..., n).
Starting from the right side of (3.1) we get
4 -
4,8,y - -a,(a,a,- - -a)a,a, ---a=
_ 2
=a,4, - -a,(a,a,- - -a)a,a, - -a,a,a, --a,a,a, - - “a,
- 2 2
=a,4, ;- -a,(a,a,- - -a,)a,a, - -a,a"
(because a;a;,=a? and a*a;=a;a?, i=1,2,..., n Corollary 2.1. (v)).
ceaaa, - -a,a,a,- - ~a,a a,- - .ana?-“

=4a

n 4,

n—1"
=a*"a?" (a,a,- - -a,)
=a*"(a,a,- - -a,)?
=e,a,a, - -a,a,a,- - -qa,
=(a,a,---a) (as e,a,=aqa,).
This proves the relation (3.1).
Multiplying (3.1) by (a,a,- - -a,)? from the right we get

(@a,a,- - -a)=

=a,a, - -a (@ a, - -a)a,a, - -a/(aa---a)
=0a,a, (- -a;(a,a, - -a)a.a,- - -a,0®"

=a,a, ,---a,(a,a, - -a,) a*"

=anan~1' * 'al al a2' * 'anazn

= q2n g2n

—gin

=e

So all elements from GI, have the same unity. Let us denote it by e.

For each element x& GI, we have xx3=e¢, hence we get that x* is inverse
for x i.e. x~1=x3,

This proves that GI, is a group.

Corollary 3.1. (i) If the set I, has exactly one member and aZ A,
then GI, is the quaternion group.
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(i) If acl, and I, has exactly two members i.e. I,={a, b} then GI, is the
Klein group or the cyclic group of order 2.

Proof. (i) Let I,={b}, then a>="5?, a*=e, ba=a’bh.

(i) Similarly, we have a?>=52=(ab)>=e. If as e, then we get the Klein
group, if a=e we get the cyclic group of order 2.

It follows from the Theorem 3.1. that every anti-inverse semigroup S is
covered by groups i.e.

S= U GI,.
acS

For an arbitrary element a<S and an arbitrary subset 1, A, the group
GI, is not anti-inverse semigroup.

For example, if I,= @ and a’+#e,, the group GI, is the cyclic group of
order 4 and is not anti-inverse; element a has not anti-inverse of its own. For
I, in Corollary 3.1. (i) and (ii) the groups GI, are anti-inverse. Really, for the
cyclic group of order 2, {e, a} we have A4,=A4,={e, a}. For the Klein group
{e, a, b, ab} we have A,=A,=A,=Ay=1{e, a, b, ab}. For the quaternion group
{e, a, @, @*, b, ab, a®b, a’b} we have A,=Ap={e,a%} A,=An=1{b, ab, a®b, a*b},
Ay=App={a, ab, @, &*b} A,=Aps={a, b, &, a*b}.

Lemma 3.1. If in a group GI, for every element of the form b, b,- - -b,,
where b;#b,, ., b1, (# 2), k=1, 2, ... 2nmy n=1, 2, ... is valid
) (byb,- - b, =a*N@ic{l, ..., 2n—1}) (b b, - -b)’ =
=@V (biyy by =07

then the element b b,- - -b,, has its anti-inverse element.

Proof. Let the condition (U) be satisfied for the element x=5,b,- - -b,,.
Then y=b,b,- - -b; (where i is the one of the existing from the condition (U))
is anti-inverse for x.

Really, 32 =a?=1x?,
(px)2=(b, b, - -b;b, b, - -b,,)>
= (b, b, - +b)2hyy - +by)?
=(@b;,, b,
=a?b; - - -b,,a%b;, - b,, (Corollary 2.1. (v))
=, by ) =a?=Xx

Accordingly, y and x are anti-inverse elements (Theorem 2.2.).

The next theorem gives a sufficient condition for GI,(I,# @) to be
anti-inverse group.
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Theorem 3.2.
VxEGI) (P=eV(xr=a?AU))) => GLE 4

Proof. An arbitrary element x&GI, is of the form
x=a b b bk (b€l s=1,2,3,4; 8,=0, 1)

because b,a=a%b, for every b,&I,(b,+a).
Let us prove that for each such x there is its anti-inverse element.
If x?=e¢, then x is its own anti-inverse¢ element, for xxx=x2x=x.
If x2=a?, then for 8,=0(i=1, 2, ... k) the element x is of the form

xX=a or x=a

so the anti-inverse for x in that case is any of the element b,<1,, because of
A,=As; (Theorem 2.5.).

In the case when at least one 8,70 and s= 0, without loss of generality
we can take that

x=b b, - -b,.

We distinguish two cases.

Case 1. n=2m—1. Then the anti-inverse for x is a.
Really,
axa=ab b, - -b,,,_,a=aa*b b,- - -b,,,_,=x

Xax=b by« - -byy_1ab b, « by =@ (b, by + bym_ ) =da?=a.

As in this case for the element a anti-inverse is x, so for the element a
anti-inverse are also elements ax, a®x, a®x (Corollary 2.1. (vi)).

Consequently, for the element of the form
a“blbz- . 'b2m-—l S=13 2: 3’ 4)
the anti-inverse is a.

Case 2. n=2m. Then we have
x2= (bl by by ) =a?
and as the condition (U) is satisfied by Lemma 3.1. x has anti-inverse element
y=b,b,. . -b, for some i<<2m.
As for y anti-inverse is x by Corollary 2.1. (vi) anti-inverse for y is y?x,
too, i.e. a®?x (for y’=a?).
Consequently, the elements of the form

b b,---b and a%b,b,---b,,

2m

have the anti-inverse element y=b5 b, - - b;.
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It remains to prove that the elements of the form
ab,b,- - -b,, and abb,---b,,

have their anti-inverse elements.
Since,

(ab, b, - b, =ab b, - -b,,ab b, - -b,,=a*(b b, - -b,,) =a*=e
1%¥2 2 2 1 2

the element ab, b,- - -b,,, is its own anti-inverse.
Similarly we get that @%b, b,- - -b,,, is its own anti-inverse.
Consequently, for an arbitrary x& GI, we have anti-inverse element.
This proves the theorem.

Corollary 3.2. IfI,={b,, b,} then the sufficient condition for GI, -/} is
Y xEGL) (x*=eV x2=a?).

Proof. An arbitrary element x&GI, is of the form
x=a b b (s=1,2,3,4; 5,=0, 1)

because b, b,=b,b, or b b,=a*b,b, for (b b,)*=e or (b b,)*=a’. In the case
(b, b,)* =a* the condition (U) is always satisfied. We can take i=1.

Theorem 3.3. Let G be a group. Then
GEA & (Yx&0) @yel) ({x, yEA.

Proof. Let G&E 4. Then for an arbitrary x&G, there is its anti-inverse
element y &G, ie.
Xr=p=(xp)?, X=X,
and for x?:£e
(3.2) [{x, y}={e, x. %, X%, », xp, x, X2 y, X’ y}

is the quaternion group.
For x?=e¢ and x#y (x, yZ{e})

(3.3) x, yil={e, x, y, xy}

is the Klein group.
For x2=e and x=y (x#e)

3.4 [{x, y}]1={e, x}

is the cyclic group of order 2.
If x=e, then e is its own anti-inverse element

3.5 [{x, y}1={e}.
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Groups (3.2), (3.3), (3.4) and (3.5) are anti-inverse (Corollary 3.1. (i)
and (ii)).

Conversely, as we have [{x, y}]E .4, then for each xCG there is its
anti-inverse element in [{x, y}]CG, and consequently in G.

This completes the proof of the theorem.

Finite groups which are anti-inverse are p-group. In fact in such groups
every element is of order 1 or 2 or 4, so every such a group is of order 2~
(n=0,1,2,....) [3]
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