A FIXED POINT THEOREM IN ORBITALLY COMPLETE METRIC SPACES*

Cheh-Chih Yeh

(Received October 31, 1977)

Let T be a selfmapping of a metric space (X, d). According to Ćirić [1], we say T is orbitally continuous iff $\lim_{i\to\infty} T^{n_i}x = u \in X$ implies $Tu = \lim_{i\to\infty} TT^{n_i}x$ and X is T-orbitally complete iff every Cauchy sequence of the form $\{T^{n_i}x\}_{i=1}^{\infty}$ converges in X.

Recently, Ćirić [5] proved the following result:

Theorem 0. Let (X, d) be a metric space and T a selfmapping of X. If X is T-orbitally complete and T is an orbitally continuous map which satisfies

(*)
$$d(Tx, Ty) < q \cdot \max \{d(x, y), (d(x, y))^{-1} d(x, Tx) d(y, Ty),$$

for all x, y in $X, x \neq y$ and q < 1, where a(x, y) is a nonnegative real function, then for each x in $X \lim_{n \to \infty} T^n x = u_x \in X$ and $Tu_x = u_x$. If in addition $a(x, y) \leq d(x, y)^{-1}$, then T has a unique fixed point.

The purpose of this paper is to improve Ćirić's result to a more general case. For related results, we refer to Ćirić [2], [3], [4].

Let R^+ denote the set of nonnegative real numbers. Let H denote a family of mappings such that $h \in H$, h: $(R^+)^3 \rightarrow R^+$ and h is upper semicontinous and nondecreasing in each coordinate variable. Also let g(t) = h(t, t, t) where $g: R^+ \rightarrow R^+$.

The following lemma is due to Singh and Meade [6].

Lemma. For every t>0, g(t)< t if and only if $\lim_{t\to\infty} g^n(t)=0$.

^{*} This research was supported by the National Science Council.

Theorem 1. Let T be a selfmapping of a metric space (X, d). Suppose that there is an $h \in H$ such that for all x, y in $X, x \neq y$

(C)
$$d(Tx, Ty) \leq h(d(x, y), (d(x, y))^{-1} d(x, Tx) d(y, Ty),$$

 $a(x, y) d(x, Ty) d(y, Tx))$

where a(x, y) is a nonnegative real function and h satisfies h(t, t, t) < t for all t > 0. If X is T-orbitally complete and T is an orbitally continuous mapping, then for each x in X, $\lim_{n \to \infty} T^n x = u_x \in X$ and $Tu_x = u_x$. If in addition $a(x, y) \leq (d(x, y))^{-1}$,

then T has a unique fixed point.

Proof Let x be any point of X and assume that $Tx \neq x$. Then by (C) $d(Tx, T^2x) \leq h(d(x, Tx), (d(x, Tx))^{-1}d(x, Tx)d(Tx, T^2x), 0)$ = $h(d(x, Tx), d(Tx, T^2x), 0)$.

Assume $d(x, Tx) < d(Tx, T^2x)$. Thus

$$d(Tx, T^2x) \leq h(d(Tx, T^2x), d(Tx, T^2x), d(Tx, T^2x)) < d(Tx, T^2x),$$

a contradiction. This contradiction proves that $d(Tx, T^2x) \le d(x, Tx)$. Since $d(Tx, T^2x) = 0 \le d(x, Tx)$ for the case Tx = x, we have

$$d(Tx, T^2x) \leq d(x, Tx)$$
.

Similarly, $d(T^2x, T^3x) \leq g(d(Tx, T^2x)) \leq g^2(d(x, Tx))$ and in general

$$d(T^n x, T^{n+1} x) \leq g^n (d(x, Tx)).$$

Since $\lim_{n\to\infty} g^n(t) = 0$ for t>0, therefore

$$\lim_{n\to\infty} d(T^n x, T^{n+1} x) = 0.$$

Employing the method as described in [6], we can prove that $\{T^n x\}$ is a Cauchy sequence. By the orbital completeness of X there exists some u_x in X such that

$$\lim_{n\to\infty}T^n\,x=u_x.$$

Since T is orbitally continuous, we have

$$Tu_x = \lim_{n \to \infty} T^{n+1} x = u_x.$$

Let $a(x, y) \leq (d(x, y))^{-1}$ and suppose that u = Tu, v = Tv and $u \neq v$. Then

$$d(u, v) = d(Tu, Tv) \leq h(d(u, v), (d(u, v))^{-1} d(u, u) d(v, v),$$

$$a(u, v) d(u, Tv) d(v, Tu))$$

$$\leq h(d(u, v), 0, (d(u, v))^{-1} d(u, v) d(u, v))$$

 $< g(d(u, v))$

a contradiction. This contradiction proves our Theorem.

We state a simple example of a mapping T that satisfies (C) but not (*) for any value of q < 1.

Example. Let $X = [0, \infty)$ with d(x, y) = |x - y|. Define two mappings $T: X \to X$ and $h: (R^+)^3 \to R^+$ by

$$Tx = x(1+x)^{-1}$$

and

$$h(x, y, z) = x(1+x)^{-1}$$

for x, y, z in R^+ . We see easily that h satisfies all the conditions of Theorem 1. Furthermore, for any x, y in $X, x \neq y$,

$$d(Tx, Ty) = \frac{|x-y|}{1+x+y+xy} \le \frac{|x-y|}{1+|x-y|} = h(d(x, y),$$
$$(d(x, y))^{-1}d(x, Tx)d(y, Ty), 0),$$

where a(x, y) = 0. Hence (C) holds. Since

$$T^n x = x (1 + nx)^{-1} \rightarrow 0$$
 as $n \rightarrow \infty$

implies

$$T 0 = \lim_{n \to \infty} TT^n x,$$

T is orbitally continuous and X is T-orbitally complete. It follows Theorem 1 that T has a unique fixed point in X. In fact, T = 0 is the unique fixed point of T in X. However, T does not satisfy (*), for otherwise there is a q < 1 such that for all x in X, $x \ne 0$.

$$x(1+x)^{-1} = d(T 0, Tx) < q \cdot \max\{x, 0, 0\} = qx$$

Hence $(1+x)^{-1} < q$ for any x in X, $x \ne 0$. This is clearly impossible. Thus T does not satisfy (*) for any value of q < 1.

Acknowledgement. The author wishes to thank the referee for their valuable comments.

REFERENCES

- [1] Čirić, Lj., On contraction type mappings, Math. Balkanica 1 (1971), 52-57.
- [2] Čirić, Lj., Fixed and periodic points almost contractive operators, Math. Balkanica 3 (1973), 33-44.
- [3] Ćirić, Lj., Fixed points for generalized multi-valued contractions, Mat. vesnik 9 (24), 1972, 265-272.
- [4] Ćirić, Lj., On some maps with a nonunique fixed point, Publ. Inst. Math., 17 (31), 1974, 52—58.
- [5] Ćirić, Lj., A certain class of maps and fixed point theorems, Publ. Inst. Math., 20 (34), 1976, 73-77.
- [6] Singh, S. P. and Meade, B. A., On common fixed point theorems, Bull. Austral. Math. Soc., 16 (1977), 49-53.

Institute of Mathematics Kobe University Kobe, Japan