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PROPERTIES OF SOLUTIONS OF THE DIFFERENTIAL
EQUATION xx"' —kx"2+f(x)=0

W. R. Utz
(Received August 20, 1977)

Summary, A continuation of the work of L. Roth and generalizations of this work
are given and applied to complete the study of a class of previously identified differential
equations,

1. Introduction.

The focus of this paper is on second order differential equations wherein
there is an x?2 term. All of the equations of Sections 2, 3, 4 are auto-
nomous and sometimes called second order differential equations of polyno-
mial class. Much of the work of P. Painlevé concerned this class of equations
and the Painlevé transcendents come from that work. In this paper we fill a
lacuna of L. Roth [9] from which we are led to the solutions of specific
equations for which there is only a partial treatment by prior authors.

In Section 5 we add to the literature of equations containing an x'2
term and integrable in closed form. In that section the equations are not all
of polynomial class.

In earlier papers [10, 11, 12] we have treated non-singular second or-
der equations with quadratic damping and cited applications of these equations.

2. A problem of L. Roth. Certain differential equations of the form
¢)) Ax" + Bx'? x Cx'+ D=0, x"=dx|dt

wherein 4, B, C, D are polynomials in x, were studied by L. Roth [9]. The
coefficients were linear except that D could be quadratic and the approach
was that of P. Painlevé [7].

To treat (1) it was reduced to
2 x(x"+ax"+bx+c)+I(x'—m)(x'—n)=0

Roth’s results are valid if /m=(+1)n, an+c¢=0 and so do not include the
equation

3) xx"' —kx"?+gx=0
unless ¢=0 in (3).
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In this, and the following section, we consider the exceptional equation
(3) and, more generally,

4 xx" —kx2+ f(x)=0

for certain k>0 and continuous functions f (x)=0 that assure some periodic
solutions. Even for equation (3) all solutions are not periodic.

The special case of (3) wherein k=1 may be solved for all real numbers
g to reveal the behavior of all solutions in the phase plane. If in

) xx"' —x"?+gx=0

one lets x'= p, x"" = p dp/dx, one secures the Bernoulli equation
xp p_ PP+gx=0
dx

which, upon solving by elementary methods yields solutions
(6) x=2q—2[cosh(‘/2 ¢, (t+cy))— 1]
i

which are clearly not periodic.

On the other hand, we can exhibit periodic solutions of (5). Since 5
may be written as x(x’' +¢)=x'x" we seek an integrating function m(t) such
that

©)) x4+ q=mx'
t)) x'=mx

Assuming that m (f) exists with a second derivative, we use (§) to eliminate x’
from (7). This gives the equation

€)] x=—gq/m’

We now seek a tractable equation involving m () so as to secure solutions
of (5) by putting m(2) into (9). If we combine (8) with (9), we secure m'’ +
+mm’=0 from which we have

m(t)= —c, tan c,_(tz_-i-c_z)

Using (9) we secure the periodic solutions
(10) X =—3 CcOs2-

of (5). The curves of the (x, x’)-plane corresponding to (10) are ellipses while
the curves corresponding to (6) are hyperbolas. The separatrix for these two
families of solutions is the parabola x'2=2gx in the (x, x')-plane. The ellip-
ses are inside the parabola. Solutions at (0, 0) are, of course, not unique.
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3. The Roth problem solved and generalized. We now consider equation
(3) which we write as the system

x'=y

PR LY
x
from which we have
dy ky*—gx
dx yx

This equation is the Bernoulli equation

If we set z=y2 and then solve the resulting equation for z, we secure

an PY=z= 2?([1— —+ex?k k£1[2
and v
(12) V=z=-2¢qgxlog |x|+cx, k=1/2

Assuming g0 (the case ¢=0 is trivial), regardless of the sign of ¢ and c,
the graph of (12) has a cycle in the (x, y)-plane and there is a corresponding
periodic solution. For example, if ¢>0, then the cycle is in the half-plane
x>0 between x=0 and x=exp (c/2g). Solutions are not all periodic, however,
as may be seen from the graph of (12) in the half-plane x>0 in case g<0.

To avoid restricting & to the rational numbers we seek periodic solu-
tions of (11) for the half-plane x>0. If £k>1/2 and ¢>0, then for any ¢>0
there is a cycle in x>0 between x=0 and

2q 12k-1)
X =
( c(1-2k) )

If ¢g>0, there will not be a cycle unless x2* is meaningful for x<0. Simi-
larly, for O0<k<1/2, if g>0 one may now take any ¢>0 to secure a cycle
in the half-plane x>0. If k<0, there are no periodic solutions.

Thus we have proved the following theorem.

Theorem 1. If in (3), k>0 and q>0, then the equation has an infi-
nite number of periodic solutions and an infinite number of non-periodic solutions.

The arguments given above may be used to examine the more general
equation (4) for non-linear, but continuous, f (x). Since it is not our aim to
be definitive in this case we will only give a sufficient condition for the exis-
tence of periodic solutions.



192 W. R. Utz

From equation (4) we secure, as before, the systern

’ ’ k 2—— x
x
from which one secures
(14) y2 = x2k [c—f2f(u)u‘2"‘1 du]
[1]

corresponding to (11) and (12). Again, considering only the half-plane x>0
to avoid restricting k, it is clear that there will be a periodic solution when-
ever ¢ may be selected to cause

(15) q:(x)=c—f2f(u) u~2k=1dy
0
to satisfy
(16) e (x)>0 for 0<x<a and ¢ (x)=0

Thus we have the following theorem.

Theorem 2. If f(x) is continuous for all real x, then for k>0 equa-
tion (4) has an infinite number of periodic solutions provided there is a ¢ and
an a(c) for which (16) holds.

4. Significant special cases of the Roth Problem. In addition the case
of the linear f(x) of the original Roth equation (3) there are instances of
incomplete investigations of (4) for specific non-linear functions f (x). We will
complete these problems to illustrate the methods of Section 3. We will write
(4) as the system (13) and then as a Bernoulli equation

- -1
(17) dy _ky_—fxy?
dx x x
A. R. Forsyth and W. Jacobsthal [3] (cf., also, E. Kamke [5, p. 578]
determined that
xcos? (t+c)=c,
are solutions of

(18) 2xx"-3x'2-4x2=0
Equation (18) suggests an examination of the equations

19) 2xx'+3x2+4x2=0

as typical of what may be done with equations of the form of (4). Except
for (18) these equations do not seem to occur in [5], or elsewhere, explicitly.

As for equation (18), the corresponding equation (17) has solutions

y2=xt(cx—4)
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from which it is clear that the phase portrait consists of a single point (x=0,
y=0) together with parabola-like curves on either side of the y=x" axis. From
the portrait, alone, we conclude that each non-trivial solution of (18) has
exactly one extreme point and that |x|—> wand |x'| > as 1— 0.

For the equation
(20) 2xx'—3x?+4x2=0

the solutions of (17) are
¥2=x2(4+cx)

Since ¢=0 yields the lines y= 4+ 2 x we discover that
x=c exp [+2(t+¢,)]

are solutions of (20). In general the phase portrait has the appearance of a
family of folia of Descartes with y= +2x acting as separatrices.
In the case

@b 2xx""+3x"2-4x2=0

the phase space curves are given by

,)/2=—‘5t~x2+cx‘3

The lines y*=4x2/5 occur for ¢=0 from which we secure the sub-family of
solutions

x=c expla(t+c)], a*=2/5
Otherwise, corresponding to each ¢#0 one secures a curve of three compo-
nents but, in particular, one component will cut the x-axis and, thus, x’=0.
Finally, for
(22) 2xx"+3x?+4x2=0

the phase portrait is given by the family of curves

4 x?
yi=———+4cx3

from which no solution, except x==0,, is evident in closed form. The solutions
of (22) are seen to have a single extreme value of x (an absolute maximum
or minimum), the solutions are bounded but |x'|—oc0 as [#|— .

This concludes the analysis of the equations (19). Possibly one further
case, f(x)=kx* should be cited. H. T. Davis [1, p. 223] cconsiders the
equation

(23) xx"—%x’2+kx4=0, k>0
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and sccures solutions
x=—"99 g2k
t+p)*+4°

An analysis of (23) using equation (17) reveals that for k>0 the solu-
tions of (23), in the phase plane, are two families of ovals symmetric with
respect to the x-axis each passing through the origin of the phase plane.

For any value of k#0 the phase portrait is given by the curves
V=x3(c—2kx)

If k<0, one has the special solutions y2= —2kx* from which it is seen that
one has the closed-form solutions of (23),
1
X=——m——k<0
m+) -2kt

The other solutions for k<0 form two familes (corresponding to ¢<<0 and
¢>0) of hyperbola-like curves filling the remainder of the phase plane.

In all instances where f(0)=0, one has x=0 as a solution of (4), of
course.

5. Equations solvable in closed form. In.this section we call attention
to generalizations of several equations with x'2 terms to the end of securing
a family of solutions in closed form

A. According to E. Kamke [5, p. 590] the equation

@F+x)x"~3x2-1)x"?2=0
has solutions
x=c¢, (X2+1) (c; t+c)=1

If f(x) is twice differentiable, the problem may be generalized to the

equation
. X" +(f )" x)-2f?x)x?=0
with solutions
x=¢, f() (e t+e)=1

The result is secured by differentiating ¢, t+c,=1/f (x) twice. The prob-
lem may be generalized further by starting with P (#)=1/f(x), where P(z) is
a polynomial of degree » with arbitrary coefficients, and then differentiating
n+1 times.

B. A. R. Forsyth [2] (cf., also, [5, p. 584]) treats
2x-D)x"-22x2-2t(x-1)x"-2x(x—-1)2=0
by setting x=1+1/u(t) to secure
(24) 12y’ -2t +2u= -2

with solutions u (t)= — 1 +¢, t-+c¢,t% Equation (24) is an Euler equation. Thus,
one may start with any Euler equation

(25) t2u’ +ktu' +ru=f (1)
and let u=g(x) (in the Forsyth case),



Properties of Solutions of the differential 195

gX)=1j(x—1), W' =g (¥ x', u'' =g " (x)x>+g (x)x"". When these are put in
(25) one has a tractable equation
t2g () x" +12g" () x?+kt g ()X +rg(x)=f (%)
We have, obviously, assumed g(x) to be twice differentiable.
C. The equation

xx'"' —x"?—x2logx=0
is treated by A. R. Forsyth and W. Jacobsthal [3] (cf., also, [5, p. 571]) by
setting u (t)=log x to secure

log x=c e +c, e

We observe that if
(26) f@u' + fu + f,()u=0
has solutions u=c, u, (t)+c,u,(t) then

logx=c,u, (t)+c,u,(t)
satisfies
27 LLDxx" = L) X'+ fH(8) xx" +x% f(t) logx=0

In particular, if (26) is the Euler equation ¢2u"" +atu’+bu=0, then (27)
becomes
t2xx"" —t2x'2+ +atxx’ +bx? logx=0

and if (26) is the constant coefficient equation u'’ +au’+bu=0, then for (27)
one has the tractable equation
xx'"" —x'?4axx’4+-bx* logx=0

In all instances we assume x(f)>0

D. To solve
xx""4+x?*—x"=0

one may let x’=u, x"'=u du/dx to secure the linear equations
" du
U=x=0, x—+u—1=0
dx
having solutions
x=c, t=x+c log{x—c [—Fc2

according to H. T. H. Piaggio [8, p. 55], [5, p. 571}
One may make a similar reduction of

xx"+x2— f(@)x'"*1=0, n=0

to a Bernoulli equation but the result is not attractive
E. To solve the equation

2xx"—-3x2=0

13*
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E. L. Ince [4], [5, p. 578], divides the equation by xx’ to secure the
families of solutions
X=¢, X=0¢;(t+cy)"?

One may treat the equation

xx""+bx'2=0
in the same manner.
F. P. Painlevé [6] observes that

x?=cx(x-1) exp[—ff(t)dt]

is a one-parameter family of first integrals of
2x(x—-Dx"-2x-Dx?+ft)x(x—1)x'=0

More generally,
x?=cg(x)exp[— [ f (1) dt]
is a family of first integrals of

28(x)"—g' () x"?—g(x) f()x'=0

Trivially, x=K is a solution of the equation.
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