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1. Introduction

This paper represents an attempt to introduce and investigate the notion
of quaternionic Banach algebras, following some classical results from the com-
plex and real theory due to the great masters as I. M. Geljfand, M. A. Nai-
mark, G. E. Shilov and others, expounded for instance in [1] or [4].

We remember that the greater part of the general theory of Banach
algebras deals with the algebras over a complex field, due to the strength of
the function theoretic methods and the Geljfand representation (which we lose
in our algebras).

But despite of the fact that our algebras are only real, so that we cannot
apply the methods of complex analysis, we obtain almost all main results of
the Geljfand theory of maximal ideals and the fundamental properties of the
specttum of an element. This is rather unexpected, and feasible due to some
assumptions ((2.3) and (3.1)) which is natural to introduce.

Throughout the paper the symbols R, C and Q denote the fields of real,
complex and quaternionic numbers respectively (Rembedded in C, C embedded
in Q). The quaternionic units are e,=1, e,=1i, e;=j, e,=k. If AEC or A& Q
then A is the conjugate number of A.

2. Quaternionic Banach algebras

Under a quaternionic Banach algebra B (briefly a QB-algebra, or simply
a Banach algebra) we mean an arbitrary unital rwo-sided quaternionic Banach
space B in which it holds
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1°  rx=xr (rER, xEB),
2 a(xP=@x)p (x, BEQ),
¥ exll=llxaf=la]]x],
4 x+yli<lixll+lrl,

and the multiplication (x, y)—xy (which is associative and distributive) possesses
the following properties:

5° ax=(xe)x and xa=x(xe)* where e is the unit,
6° xe=eo (aEQ),

7 lwl<lixli- Iyl and [lef=1,

8 lixayil=fal-jlxy].

Then immediately holds:
9°  a(xp)=(xx)y,

10° (x0)y=x(xy),

I x(og=Gp) e
the last three relations are obviously equal if a<=R.

Putting

B,={xcB]| e,x=xe,, p=2,3,4},
B()={xCSB|e,x=xe,},

1 4
we get that Re(x): 4 > ¢é,xe,& B, for any xE€B.
p=1
4
Since x= 3 Re(&,x)e, we obtain the direct sums:
p=1

@1 B= (e, B) = B,®( B)D( BB By,
2.2) B=B()@(B ().

It is easily observed that B, and B (i) are real and complex Banach su-
balgebras of B respectively.

We remark that such an algebra B is always a real Banach algebra but
never a complex Banach algebra. The reason is that we lose the important re-
lation z(xy)=x(zy) (z&C) which enables the application of complex function
nethods™®,

We introduce the following important assumption:

*) In fact the relation z (zy)=x (z») holds for every y&B iff zx=xz that is xEB @)
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(2.3) The set B, is a commutative real subalgebra of B, or equivalently,
(2.4) The set B (i) is a commutative complex subalgebra of B,
which we employ throughout the paper.

It immediately follows that the center Z(B)={x|xy=yx for VycB}
coincides with B,.

Definition 1. 4 mapping x—>x*(x&B) of a quaternionic Banach
algebra B is said to be an involution if it possesses the following properties:.

(D) (ctp)F=x*+y*,

(i) Gep)*=y*x*,

(i) x**=x,

) (@xB)*=Bx*o[]

If x=2xp e,EB (x,,...,x, €EBy) let us define the mapping x—x by

_ _ 1
¥=2x,6,=2x,5,¢,, where sp:[ Lp
? ? -1, p>1.

Proposition 1. The mapping x—X is an involution of the algebra B. []

We call that involution secondary.
Then e=e, x=x iff xEB,, x '=x"1 etc.

As a particular case of real Banach algebras we have that every xC B
for which ||e—xI{<1 is invertible, and the inverse element

-]

o= (e-x) = 3 e—x)

p=0
(an absolutely convergent series).
The classical example of such algebras is the set B=C(X) of all conti-
nuous quaternionic valued functions defined on a bicompact Hausdorff space X.

We think it is quite difficult to provide at least one example of such an
algebra in the set of left linear operators B(H) of a two-sided Banach space
H. 1t is especially difficult to satisfy the norm-condition 8° which is very rest-
rictive.

3. Ideals of QB-algebras

3.1. For any subset EC B let us denote by ad (E) the adherence of E and
E={x|xEE}.

We call a set ECB symmetric if E=E.

We easily see that an ECB is a left subspace of B iff E is its right
subspace.
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For any left subspace E of B we write:
R(E)={Re(x)| xEE},
H(E)=2.R(E) ¢, = ®(e, R (E)).
Then R(E) is a real subspace of B, (not necessarily contained in E), and

H(E) is a minimal two-sided subspace of B containing E. Thus E=H (E) iff
E is a two-sided subspace, and then ad (E)=2 e, ad (E).
F4

Proposition 2. A left subspace E is a two-sided subspace iff it sa-
tisfies one of the following equivalent conditions:

() H(E)=E;

(i) R(E)CE;

(iiy E=E, ie E is a symmetric set;

(ivy Ee,CE (p=2,3,4.0

For arbitrary subsets E, F of B, the denotations E+ F, EF and o« EfB
have the usual meaning.

Definition 2. A subset J of B is its left (or right) ideal if it satisfies
H J+JCJ,
(i) BICJ (rJBCJ). O

It is easy to sce that a subset JC B is a left ideal of B iff J is a right
ideal of B.

Proposition 3. If J is a left ideal of B then R(J) is a real ideal of
B,, and H(J) is a two-sided ideal of B (minimal two-sided ideal containing J). []

Proposition 4. A left ideal J of B is its two-sided ideal iff it satisfies
one of the following equivalent conditions:

@0 HU)=J,
i) RUCY,
(i) J=J,

(iv)y Je,CJ (p=2,3,4. [
In view of the property (iii) we often call two-sided ideals of B symmetric.
As in the complex and the real case, every left (or right) ideal J of B is

contained in a maximal left (or right) ideal M, and every maximal left (or maxi-
mal right) ideal of B is closed.
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Next we introduce an important assumption which is supposed to be
fulfilled throughout the paper:

(3.1)  Every maximal left ideal M of B is symmetric, that is M= M.
This assumption is equivalent to each of the following conditions:

(3.2)  Every maximal right ideal M is symmetric;

(3.3)  Every maximal left (or right) ideal M of B is two-sided:

(3.4)  Every maximal left (or right) ideal M satisfies R(M)#B,, or equiva-
lently H (M)+B;

(3.5)  Every maximal ideal M (i) of B (i) is symmetric, i.e. M (i)=M (i);

(3.6)  Every left maximal ideal M of B can be split into the form M (i)®jM (i),
where M (i) is a symmetric maximal ideal of B (i).

This is the reason why we call such quaternionic Banach algebras sym-
metric.

Proposition 5. The left maximal, the right maximal and the two-sidet
maximal ideals of B are the same.

Proof. Since every left maximal ideal M is two-sided, it is obviously a
two-sided maximal ideal of B.

Conversely, if a two-sided maximal ideal M is contained in some larger
left maximal ideal M’, the ideal M’ must be two-sided, which is impossible. []

In view of the preceding property, we will speak only about the maximal
ideals in B.

Proposition 6. An element x+£0 is invertible iff it is not contained in
any symmetric ideal of B.

Proof. If x invertible then the set J(x)=B-x is a left proper ideal of
B, thus J(x) is contained in some maximal two-sided ideal M.

The contrary is obvious. []

Theorem 1. (i) 4 Banach algebra B without symmetric ideals is divi-
sible, and each element different from zero is invertible.

(i) (Geljfand-Mazur theorem). Every divisible quaternionic Banach algebra
B is isomorphic to the field Q.

Proof. (i) Since B is a division ring, the complex subalgebra B (i) is
such a ring too, so that B (i) is isomorphic to the field C. Consequently, every
element x& B (i) is of the form ze (z&C), and element x&B is of the form
Ae (A&Q), which implies the required isomorphism. [

3.2 (Quotient algebra). Let M be an arbitrary symmetric closed proper
ideal of B. Then the quotient algebra B/M is a two-sided quaternionic Banach
algebra which satisfes all conditions 1°—11°,

12 Publications de I'Institut Mathématique
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Especially the property |[xay|=|a|-|xy|(x, yEB) implies || XaY|=
=|a| || XY|[(X. YEB/M), and we get
(BIM)y={x,+ M| x,E By},
(BIM) () ={x+M | xB (i)}

As in the complex theory, there is a one-to-one correspondence between
left (or right or symmetric) ideals of the algebra B/M and the corresponding
ideals of the algebra B containing the ideal M.

Finally we obtain that the properties (2.3) and (3.1) hold in such
algebras too.

Theorem 2. Let M be any maximal ideal of B. Then the quotient
algebra B[M is (bilaterally) isomorphic to the field Q.

The proof is standard. []
Next let 7 (B) be the set of all maximal ideals of B.

Then for every x&B we obtain a function x:_ g (B)—Q (the Geljfand
transform of x) defined by relation

*) x—x(M)ecM (x(M)=x(M)).
Proposition 7. The functions X (xE B) possess the following properties:
M) x+y) (M)=x(M)+y (M),

@) ) (M) =x (M) y (M),

(i) (xxPB) (M)=ox(M)B;

(i) eM)=1 (VM)

V) xM)=0 < xcM,;

@) |x() <] x

(i) M,#M, = there is an xS B such that x (M )+#x(M,);

(viii) xEB, = X is a real-valued function;

(iX) xEB(@) > x is a complex C-valued function, and
xEB,e, = xisa Re,-valued function;

®) *M=xM) VM), ie. x=x;

&) If xcB() and M=M @)D/ M @S M (B), then x(M)=x(M (i)
M @ M(B@)).

Proof. Proofs of (i) — (vii) are standard.

If further x& B, then ax=xa(VaEQ), thus ax(M)=x (M)« (¥ aEQ)
so that x(M)ER (Y Mc&_g{(B)). Consequently, the relation (ix) is obvious.
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For an arbitrary x=2 x,e,EB we obtain x (M)=2. x, (M) e,. and
¥4 P

}(M)=(zp x,e,)=2 x, (M)e,=2 x,(M)e,=x (M),

which proves (x). ,
Let now x&B, M=M (i)®j M (i), where M (i) is a symmetric maximal
ideal of B (i), and x(M)=z, +jz, (z,;,2,EC); then by definition
x—xM)e=x-z,e—jz,e €cM@GEDjM ().
It follows
x-ziecM (i), z,eCM(),

which necessarily implies z,=0 and z,=x (M (i)). Thus x(M)=z,=x(M(3)),
which proves (xi). []

4. The maximal ideal space

As usual, we provide the set of maximal ideals _j/ (B) of B by weak*-to-

pology of left dual space B’, the weakest topology in which all the functions
xEB are contionuous.
The sets

U(«". ..... xn:ﬁ)(Mo)':{Mpr(M)_xp(Mo)I<s’ p=],...,n}

form a fundamental system of neighbourhoods (nbhds) of an ideal M,c ) (B),
and _7/(B) becomes the Hausdorff topological space with this topology.

The maximal ideal space (/)= _#{ (B (i)) is endowed also by the weak*
-topology in which the sets

Vorioooom oMo @) ={M @) ||y, M (D)) -y, M, () |<e, p=1,..., n}

(Yi».-.» }EB()) form a fundamental system of nbhd’s of an ideal
M e M3G).

We have a natural mapping == (i):_# (i)—_#/ defined by

TOME)=MOD/MGE MOHE M),

which is obviously one-to-one and onto.

Theorem 3. (i) The mapping w (i) is a homeomorphism of the space
M (i) onto the space /.

(i) The maximal ideal space = sl (B) is bicompact.

Proof. We prove that the mappings n (i) and = (i)~! are continuous.

Let M,())E_# (i) and = (i) (M, (i)) = M,.

If Ug,,..., i o(My)=U is a nbhdof M, (x,, ..., x,EB), and x,=y,+
+jt, A<p<m; y,,,EB (), it is easily seen that mw(i)) VCU where V=
=V, Fre Bpeeens tm: o/ 2) (using Proposition 7, (xi)). Hence = (i) is continuous.
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Conversely. for an arbitrary nbhd V=V, .., x,; oM, () of M,(@)
(x5 .- X,EB()) we see that w(i)~*(U)CV where U=U,,..., xn; 9 (M),
which implies that m(i)~! is continuous. Hence, = (i) is a homeomorphism.

Since the space _g (i) is bicompact [1] (p. 38), [4] (p. 233), the second
statement is obvious. [J

Remark. If B=C(X) is the algebra of all continuous quaternionic
functionc defined on a bicompact Hausdorff space X, the preceding the-
orem implies that the space _g/(B) (homeomorphic to the space (B ()
is homeomorphic to the space X.

Proposition 8. The mapping X—>X (xEB) is a homomorphism of the
algebra B onto an algebra B of continuous functions defined on a bicompact
Hausdorff space.

The kernel of this mapping is radical
Rad (B)={xEB|x (M) =0, Y ME ). O

5. The algebra B of continuous functions x

The set B= {x|x€B} (of equivalence classes) forms a Banach algebra
with the norm ||xHB—sup}x(M)]

All properties of the norm (1°—8°) and moreover the property (2.3) are
easily verified.

Theorem 4. Every continuous quaternionic function on the space _Jjl is
the limit of a uniform convergent sequence of functions from the algebra B, that is

C (M) =ad(B).

Proof. If f&C () then f=g-+jh, where g, h are continuous complex
valued tunctions, i.e. g, h&€C, ().

Then for every M=M ()@jM ()= (M (i))E_j it holds;
fM)=(hm) (M (@) +j () (M (@)).
Since the mapping w:_# ({)—_# is a homeomorphism between _ (i)
and _/, the mappings gm, hm are continuous complex valued functions, thus
But since the algebra B (i)" is ,,symmetric’* ([1], p. 53), the function g=

is the limit of a uniform convergent sequence x,&B (i)~ and hm is the limit
of such a sequence y,&B(i)".
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Using the relations x, (M (i))=x,(M), y,(M (i))=y,(M) (Proposition 7,
(xi)), we obtain

g (M) =1lim. unif. x, (M) MecAM).
h (M) =1im. unif. y, (M),
thus f(M)=lim. unif. o (M) (M E M) where v,=x,+jy,&B. []

Proposition 10. If |[x2||=| x||> for every x& B, then the algebra B
is topologically isomorphic to the algebra C (_U}).®

Proof. As an immediate consequence of the Corollary of the Theorem
2 ([1] p. S7) we obtain

Ix[l/2<ix||<2||x]| (xEB).

Hence the mapping A : B—~B defined by A (x)=x is a topological isomorphism
of B onto B.

But then the uniform convergence of functions x,&B implies the norm
convergence of the sequence x,< B, so that B is linearly isomorphic to the
algebra C () (Theorem 4).

It completes the proof. []

6. Spectrum of an element

The spectrum of an element x&B can be defined at least in two diffe-
rent ways. Namely, since we can construct the complexification B¢ of any
quaternionic Banach algebra B, we have the possibility to say that the spectrum
of an element x B is its complex spectrum in the algebra Bc.

But we adopt another definition which seems to be more advantageous.

Definition 3. The spectrum o(x) of an element x<B\ 0 is the set
{AEQ|x—\e is not invertible}. [
This spectrum we call quaternionic.

Proposition 11. (i) An element x+#0 is invertible iff x(M)+#0
Y Mc );
(ii) The spectrum o (x) (x&B) is a non-empty set which coincides to the

set G (x)={x(M)|ME }.
Proof. The proof of (i) is standard. If there is not any maximal ideal

in B, we obtain that B is isomorphic with Q, but then for any x=1e&EB we
get o (x)={A}

*) We cannot prove that this isomorphism is isometric!
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Next (i) easily follows from (i). [J
For an arbitrary x€B we put d(x): =lim VH_;”_H ),

Theorem 5. (i) Spectrum o (x) of an element xB is a compact subset
in the field Q lying in the sphere |\ |<d (x).

(i) For any quaternionic rational function f(\)=g (A h M) (A& Q) with no
poles on o (x) the spectral mapping theorem holds:

o (f(x) =f(o (x)).

Proof. (i) The resolvent set o (x)=Q\ o(x) is open, for if ANEp (1),
A=Al <m/l[ (x—2, &~ ||=m/[]| y,~'|| (m<1) where Yo=Xx—Aye, then the se-
ries i o' (A =217 y,~! is absolutely convergent, so that

p=0
Xx—he=x—Me—-(A-A)e=(x—2re)(e—y,"  (A—- 1))

is invertible.

Let us prove that if |A|>d(x) the series — i (A~1x)?A~! is absolutely

p=0
convergent.

By virtue of the norm-assumption 8° we have:
IO 2| =[A 7l x? [ =[x ||-[A]*  (pEN)

so that the radius of convergence of this power series is d(x). Hence x — e =
= —A(e—A"1x) is invertible if |A|>d(x), thus c()C{A:|A|<dx)}

Remark. The relation r,(x)=d(x) holds for every xc B (i).
We do not know whether rq(x)=d(x) holds for every x< B.

Besides we mention that the estimate r, (x)<d(x) is essentially based on
the norm-assumption 8°; without this assumption we only have: r, x)<]| xjl.
We do not know any better estimate in this general case.

(i) By virtue of Proposition 11 (ii), for any quaternionic polynomial

X 4
(%) PO\):PK(;\): z Z ak,...k,,,ﬂekl?\---ek,,,?\ekmﬂ

(@, . .kmy, ER), in the canonical form (), we easily have the relation
P(x)(M)=P(x(M)) (M& ), thus o(P(x))=P (c(x)) (the spectral mapping
theorem for polynomials).

Let next f(A)=g(}) A(2)~' be any quaternionic rational function such
that the set of poles S(f)={3EQ|h(A)=0}Cp(x).

*) The existence of d(x) stems from the general property in real Banach algebras.
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Since 0¢h (o (x)) =0 (h(x)) we have h(x)~! there exists, so that f(x)=
=g(x)h(x)"! exists too.
But since y~! (M)=y(M)~! (if y& B is invertible) we obtain
f) (M)=g @ hx)~ (M)=gx) M) h(x)" (M)=
=g (x (M) h(x M),

wherefrom o (f(x))=f(c(x)). (I

From this spectral mapping theorem we have particularly:
6 (@xB)=ac(x)B(x BEQ), Ax )=o) (f x is invertible),
o(x)={MArEc(X}o(x+re)=0(x)+A, etc.

Proposition 12. (i) If xEBye, then s (x)CRe,(p=1,2, 3, 4);
(i) If x&B (i) then o (x)CC;

(iii) For every xEB, it holds &(x)=0 (%).

— The proofs are immediate consequences of Proposition 11. O
We point out the following estimate of the spectral radius.

Proposition 13. Ifx=2xpep6230ep then
F4 p

dy<r,<minld@, VS @)} (=1,2,3,9).

Proof. From

|x(M)12=§lx,,(M>|2=§|x,,<M(i»\2 ME M),

using the complex spectral radius formula r, (2) =d (v) (@< B (i), we immediately
obtain d(x,)<r, (x).

But since, in view of the Theorem 5, rq(x)<<d(x), and obviously r, (x)*<
<z d?(x,), the proof is complete. [
p

Remark. We want to give a direct deduction of the estimates d(x,)<
<dx) (p=1,2,3,4).
Since

1 ¢
x,=Re (épx)=: 2
using norm-property 8° we obtain

[l %521 = <=,
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and generally,
x>l =1, 2,..0,
which implies d(x,)<d (x). O
We do not know whether, in general, there is some estimate of the form

(*) d(xP<c2d(x,)? (c>0),

or similarly, whether in the general case d x)=0 (p=1,2,3,4) necessarily
implies d (x)=0.
We concludes this point with an expected property of the radical.

Proposition 14. (i) Radical Rad (B) of an algebra B is a symmetric
ideal which coincides with the intersection of all maximal ideals M&_j(B). It
holds

Rad (B) = Rad (B (i))®; Rad (B (i) =

=@ Rad(B)e,.
p

(i) Element x=2 x,e,CRad(B) iff o(x)={0},or iff d(x)= - - - =d(x)=
=0, or if d(x)=0.

Proof. (i) Obviuosly x&Rad(B) iff ¢(x)={0}. In view of (i) it is
also equivalent to x,&Rad(B)CRad(B(i)) which occurs only if d(x,)=0
(r=1,2,3,4).

The last statement is clear in view of the relation & (x,)<<d (x).

As we have already said, we do not know whether d(x) must be 0 if
x&Rad (B). O

7. Generators and joint spectrum

A Banach algebra B is said to be finitely generated (by elements xV, ...,
x®) if every element x< B can be approximated by a sequence of quaternionic
polynomials in x,..., x® (generators of B) ¥,

Theorem 6. Let a Banach algebra B be generated by elements x©, ...,
x". Then its maximal ideal space _jj(B) is homeomorphic to a compact subset
of the space Q"

Conversely, every compact subset FC Q" is the maximal ideal space of a
Banach algebra B with n generators.

*) We take a polynomial in 2!, ..., A*€Q to mean an arbitrary finite sum of pro-
ducts of variables A, ..., A" and constants from Q.
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Proof. Denoting by
F={(xO (M), ..., xX»M) | Mc M} C O

the joint spectrum of x(), ..., x®, and using the standard arguments ([1] pp.
42—46), we obtain that = M (B) is homeomorphic to the subset F, which
is compact.

Next we give some comments related to the real and quaternionic poly-
nomial convexity (in R* and Q%) which are necessary for the completion of the
proof.

A compact set FC R" (respectively FC Q") is said to be real (quaternionic)
polynomially convex if for every £= (B!, ..., £ C R™\ F (respectively EC O\ F)
there is a real (quaternionic) polynomial PMN)=P(@Q, ..., X such that P(§)=1
and |P(}) | <1 (AEF).

We assert: Every compact subset FCR" (FC Q") is polynomially convex,
and we prove this,

Let first FCR" and £ F, and put:

a,= max (W-E£F? (p=1,..., n),

4

r=EF
1/2na,, if a,=0
bp= R ’
0, if a,=0

define next P(\)=1— i b, (W —EP)2.
p=1

Then at least one among b,, ..., b, is different from zero, and we have
PE) =1, PW=1/2>0(A&F) because b, W —-Ery¥<b,a,<1/2n (p=1, ..., n).
Hence max [P (2)|=0<1 (F is compact), thus 1/2<0<1. []
ACF

Further, identifying Q" with R*" (as real vector space), we easily see that
an FC Q" is quaternionic polynomially convex if and only if it is really poly-
nomially convex (in R*?).

To verify this, it is sufficient to remark that every real polynomial
PM' ..., A7) in R** is a special quaternionic polynomial, for every real
component A,'= Re (€, =i~2ém @, \) e, of X (1<vn, 1< p<d) is a spe-

m

cial quaternionic polynomial in Al, ..., A"
We now complete the proof of the theorem.

Using the spectral mapping theorem for joint spectrum ane polynomial
functions of n variables (which can be proved exactly as Theorem 5), we can
apply the same arguments as in [1] (p. 45) or [2](p. 101). [J
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8. Shilov boundary.

Let B be a quaternionic Banach algebra, 4/ (B) being its maximal ideal
space.
If x€B and FC_g(B) is any closed subset in the maximal ideal space,
let us denote the semi-norm ||x|r= sup |x(M)|. The set F is said to be
McF

maximizing (for B) if | x| z=]x].
Then the Shilov boundary S (B) of B is the intersection of all maximizing
sets of B.

Proposition 15. There exists a unique Shilov boundary S (B) in the
maximal ideal M (B).

— The proof is exactly the same as in [1}(pp. 75—77), or [4](pp.
250—251). 0O

Proposition 16. A maximal ideal M, /) (B) belongs to the set S (B)
if for every nbhd V (M) of M, there is a function XE B such that max |x(M)|=

- R McV (M)
=|x|l and |x (M) |<|| x| M)E_A\V) O

Theorem 7. The Shilov boundary S (B) coincides with the entire maxi-
mal ideal space /| (B).

Proof. This proprerty is a direct consequence of the corresponding
theorem in complex symmetric algebras [4] (p. 258). Namely, as in the quoted
reference, for any M, _# and any open nbhd ¥ of M, there is a continuous
real function f (O<f(M)<!,VM) defined on _#(B) such that f(My)=1,
FUNY)=0.

But then, by virtue of Proposition 16, there is an x& B such that
|lf(M)—x(M)[<1/3 (YME& _p(B)), thus |x|l=]| x|y, and |[x(M)|<|/x]]
(ME _HN\V); therefore M,cS(B), q.e.d. ]

9. Extensions of maximal ideals

Theorem 8. Let B and B’ be two Banach algebras with the same unit
e, and let B be imbedded in B'. Then every maximal ideal of B can be extended
to a maximal ideal of B'.

For every x<B it holds:

*) %r; () <re ()< (1).

Proof. We use the classical results from [1] (p. 82, Th. 1) or [4]
(p. 252), and the preceding theorem.
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Let us consider any maximal ideal M =M ()@ jM (i) of B.

Since the complex Banach subalgebra B (i) is symmetric, by Theorem 3
of [4](p. 258) we have that $(B(i))= 7 (i), so the quoted theorem implies
that there exists an extension M (i)’ of M (/) in the algebra B’. But M (i)’ is
a symmetric maximal ideal, so that M’'=M (i)Y @jM (i)’ is a required extension
of M from the space _g(B’).

Next, since [x (M) [2=|y (M () |2+t (M (@))|? (x=y+jtcB({H@JjB 1)),
the relation sup|v (M (i)) |=sup|v (M (i))| (vEB(i)) imples the above inequa-

M) M@y
lities.

We think it is interesting to see when the equality r,(x)=r,(x) does not
hold. Tt holds at least if x& B (i), x&q B(i) (€ Q) etc. []

10. Decomposition of a Banach algebra into a direct sum of ideals

Proposition 17. If B=J,@®J, is a direct sum of symmetric ideals
Ji,J, and e , e, are the components of unit e, then e, is the unit of the closed
subalgebra J,(p=1, 2).

Vice versa, let there be an e, & B, such that e?=e, (e,+#0, €). Then B is
the direct sum of symmetric ideals J,=B-e, (p=1,2) generated by e, and
e,=e—e,.

~— Proof is very similar to the ordinary one ([i], p. 101). We only.
observe that e=e, +e,cJ,@J, implies e , e,C B,. []

Theorem 9. If B=J,@J, is the direct sum of two symmetric ideals J,
and J,, then the space | (B) is the union of two disjoint closed sets F,, F,
where F,= #(J,) (p=1,2). O

Theorem 10. Let the space _# (B) be the disjoint union of two closed
sets F\, F,. Then B is the direct sum J,®J, of two unital subalgebras J,, J,
and F,= H(J,) (p=1,2).

Proof. We prove that there is an element e C B, such that e?=e¢,
and Fi={M¢E€ ) (B)|e,(M)=1}.
If M=M(i)®jM (i) where M (i)E_# (i), let us put
F,O)={M@O|M=M@O@MOEF} (p=1,2).

Then 2L (B (i) = F, () UF, (i).

By virtue of Theorem 2 in [I] (p. 102—103), there exists some v& B (i)
such that

L MOEF @)
0, M(HEF, ()

Thus for every M ()EF(@i) it holds v2(M (i))=v(M (i))€{0, 1}, so that
22 —vE&Rad (B ().

v(M(i))={



188 Aleksandar Torgadev

Denoting next w= Re (v) = é— (@+7v) we have

w (M (i) = Re v (M (i)) = v (1)),
thus for every M ()& F(i) it holds w(M (i)){0, 1}, in other words

wHM@)=wM3GE) WEB,).
Let us define next, as in [1](p. 103):

(*) e =e (W)= - f (w—ze)~1dz.
2ni
[z~1]=1/2

Since the circle |z—1|=1/2 is symmetric with respect to the real axis, we
obtain

a=ém=—;‘; f (W—z6)=1 dz =
|z—1{=1/2

=e, (for w= w).

Thus the element e, (which is different from 0 and from e) belongs to the
real subalgebra B,, q.e.d.

Moreover, it holds e,2=e, and the Proposition 17 completes the proof. [J
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