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Abstract: 1t is proved that line and total graphs (and their complements
too) are nearly always prime, i.e. excluding some exceptions, they could not be
decomposed with respect to some binary operations (sum, product and strong pro-
duct). In other words, the corresponding graph equations have not too many solutions.

0. Introduction

In this paper we shall consider only finite, undirected graphs without

loops or multiple edges. Throughout the paper G, L(G), T(G), as customary,
will denote the comglement, the line graph and the total graph of G. Further,

U (in some papers +) and V (in [1] it is denoted by +) will stand for union
and join of graphs. We shall also prefer to use + for the cartesian product,
x for the conjunction and  for the strong product of some graphs. Next,
we shall assume that two graphs G and H are equal if they are isomorphic

~PVY
2edQy

Fig 1.

11*



164 Slobodan K. Simié¢

and this will be denoted by G=H. If G is an induced subgraph of H, we
shall write GC H. For the rest of notations, see [1]. Especially for the defi-
nition of graph equations, see [2] or [3].

For our further purposes we quote some facts about line and total
graphs.

Theorem 0.1. G is a line graph if and only if none of the nine graphs
from Fig. 1 is an induced subgraph of G.

Theorem 0.2. If G and H are connected graphs such that L(G)= L(H)
then G=H unless one of them is K; and the other is K ;.

These are well known theorems of L. W. Beineke and H. Whitney, for line
graphs. There are also analogous results for total graphs (one can find them
in [4], [5], [6]). Here we shall only give some lemmas which can be easily
verified. Primarily, we need a concept of v-vertex and e-vertex of a total graph.
If H=T(G) then some vertex of H is the v-vertex (e-vertex) if it originates
from some vertex (edge) of G. Note, according to [4] if G has no cycles or
complete graphs as components, then v-vertices or e-vertices are uniquely deter-
mined in H. Now, we give the following six lemmas, first three of which, can
also be found in [7].

Lemma 1. In T(G) any e-vertex is adjacent to precisely two v-vertices.

Lemma 2. If in T(G) the e-vertex e is adjacent to v-vertices u and v,
then u and v are adjacent.

Lemma 3. If in T(G) the v-vertex v is adjacent to e-vertices e and f,
then e and f are adjacent.

Lemma 4. If K, ;CT(G), then the ,,central vertex of K, , is the
v-vertex.

Lemma 5. If in T(G) two v-vertices are adjacent, then there is just
one e-vertex adjacent to both of them.

Lemma 6. If in T(G) two e-vertices are adjacent, then there is just
one v-vertex adjacent to both of them. i

In Section A4 we shall treat the problems of the decomposition of the
line graphs (and their complements too) according to binary operations referred
as sum +, product x and strong product *, while in Section B the analogous
problems will be considered for total graphs. Some interesting remarks on total
graphs are given in the Appendix.

1. Section A

In [8] or [9] one can find the following result, which is here restated in
the form of graph equation.

Theorem Al. Graph equation L(G)=G,+G,, for G being connected
and G, G, being nontrivial, has the following solutions: (G, G,, G,)=
=(Km.n’ Km’ Kn)
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Of course, the restrictions given for graphs G, G,, G, do not, in essence,
change the generality of the above result. In further text we shall use to make
some similar restrictions in order to avoid any of uninteresting cases.

Theorem A2. Graph equation L (G)=G,+ G,, for G having no isolated
vertices and for G,,G, being nontrivial, has the following solutions:

(G, G, G)=(Cq, K, Ky, (K,,, K;, K)), (K|, m» mK,, 1K), (C,, 2K, K,),
(K4’ 3K1’ Kz)’ (2 K1.2! Kz’ Kz)’ (4 K1.2’ Kz’ C4), (K2,4_2K2= Kz’ Kl.z)*’
where i#£j, I, j=1, 2,

Proot. Suppose first K;CG;. But then G; must be complete since other-
wise K U K,C2K,+K,CG,+G,, i.e. BJCL(G) (see Fig. 1). In the same
way, it follows that G; cannot have more than 3 vertices and that G, cannot
be a supergraph of K, (otherwise K, U K, appears again in G, +G,). Hence,

(G, G) =(K,, K)), (K, K;) and we get G easily.

Now let K,¢ G,, G,. Consequently K, LG, +G,. Graphs H=L(G) (for
some G) having no triangles were described in [10]. For our purpose the follo-
wing observations are sufficient.

(@) K, , is not an induced subgraph for both G, and G,. Namely, if
K ,CG, G,, then K,UK, ,CK, ,+K,,CG, +G,, ie. B,CL(G) (see Fig. 1).

(b) If G; has at least one edge, then P, or K, , are not induced sub-
graphs of G;. For P,CG,, since K,UK, ,CK,+P,CG,+G,, we get the same
contradiction as with (a). For K, ,CG,, then K,+K, ; contains as an induced
subgraph a graph obtained from a cycle of length 4 by adding two pendant
edges to the same vertex of the cycle. Since the complement of the last graph
is B; (see Fig. 1) we arrive to a contradiction.

(© If K,UK, is an induced subgraph of G;, then G,=K,. Namely, if G,
has at least two vertices, then K, UK, , or K, J3K, are induced subgraphs
of G,+G,. Since the complements of the above two graphs are B, and B,
(see Fig. 1) we arrive to a contradiction.

Now we shall summarize the above observations. Clearly, G, and G,
can be both without edges and then we find G easily. If only G; is without
edges then L(G)= p(G)G; (p(G)>=2) and again if we want to avoid B,C
CL(G) or B,CL(G) it follows p (G)< 3 and G,=K,. Thus, (G;, G))=(2K,, K,),
(3K,, K,) and for both cases G can be easily found. So, let both G,, G,
have edges. Due to (¢) G,, G, are both connected and since they are as well
triangle-free according to (a) say G;=K, and from (b) G, can be equal only
to X,, K,,,, C,. By direct checking we get that in all three possibilities G
exists. [

* Ku,n—p K, is obtained from K, , by removing p independent edges.



166 Slobodan K. Simié

Theorem A3. Graph equation L(G)=G, x G, for G having no isolated
vertices and for G, G, being connected and nontrivial, has the following solutions:

(G’ Gi) Gj):(2Pn+23 P'H—l’ PZ)! (2C2n+23 C2”+2, KZ)’ (C4n+2, C2n+l’ KZ)’
(K;.35 K;, K;), where i#£j, i, j=1, 2.

Proof. Suppose that maximal vertex degree of G, or G, is greater
than 2. Then, since G, and G, both have edges, it is easy too see that K, ,C
CG, xG,, ie., K, ;CL(G). The last contradiction gives that G, and G,, due
to connectedness, are paths or cycles. For K, ,CG,; it follows that G;,=K,,
since otherwise (if G; contains K, , or K,) K, , appears again in G, xG,.
Collecting the above conclusions we arrive at the proof of the theorem. [

The following two theorems are simple for proving and we only quote
them. :

Theorem A4. Graph equation L(G)= G, x G,, for G having no isolated
vertices and for G,, G, being nontrivial and not totally disconnected, has. the
Sfollowing solutions:

G, Gy, G)=(Kp,n» Kn» K,).

Theorem AS. Graph equation L (G)=G,*G,, for G being connected and
for G,, G, being nontrivial, has the following solutions:

(G. G, G)=(K, nns Ku» K,)-

Theorem A6. Graph equation L(G)=G, *G,, for G having no isolated
vertices and for G,, G, being nontrivial, has the following solutions:

G, G, G)=(K, > mK, nK)), (kIK,, K, K)), 2n K,Un,C,Un,K,, K,,

n, K, \Un, K,Un, K), where i+ j, i, j=1, 2.

Proof If G, or G, have no edges the same situation as with Theorem
A2 appears. So let both G, and G, have edges. If G, and G, are both com-
plete we immediately get the corresponding graphs G. Thus, take that at least
one of G, and G, is incomplete. Now, by observing that H,CG, and H,CG,
implies H,* H,C G,»G, we easily get that G, and G, have not K,UK, as in-
duced subgraphs, since otherwise K, UK,C(K,UK)*K,, ie. K, ,CL(G) (no-
te G, and G, both have edges). Hence, if G; is incomplete it must contain X ,
as an induced subgraph. But, then G; cannot contain K, , or K, as induced
subgraphs since KUK, appears in K, ,*K, , and K,*K, , as an induced
subgraph. Thus G;=K,. For 4K,CG; we have K, 3K CG, *G,, ie K,—
—xC L(G) (contradiction due to Theorem 0.1). Now we have G,=n, K,\Un, K,U
Uny K,. Since for each value of n,, n,, n, G exists we have found all the
solutions. [

2. Section B
Now we shall prove the analogous theorems for totalgraphs.

Theorem B1. Graph equation T (G)=G,+G,, for G,, G, being connec-
ted and nontrivial, has no solutions.
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Proof. Since both G,, G, have edges the same holds for G. But then
T (G) contains a triangle and hence G, or G, must contain a triangle. Since G,
and G, both have edges to each triangle in G, + G, there corresponds another
triangle such that they together induce a prism K, + K,. Let us show that in T (G)
there is a triangle without just mentioned property. Observe the triangle euv
in T(G) such that e is an e-vertex and u, v are v-vertices. Suppose that x is
a vertex of another triangle (which corresponds to the first one) and take
that x is adjacent to e and not to u and v. By Lemma 1, x must be an
e-vertex. Now, using Lemma 6 we easily get that x must be adjacent to u
or v. [

Theorem B2. Graph equation T(G)=G,+G,, for G,, G, being non-
trivial, has the following solutons:

G, Gi, G)=(K,, 3K,, K,), where i, i, j=1, 2.

Proof. According to Theorem C1 (see the Appendix) T'(G) is discon-
nected only if G=K, or K, ,. For G=K, we easily get G, and G,, while for
G=K,,, there are no nontrivial solutions. Hence, we have that T (G) is con-
nected, what implies the same for G, and G,. If G, and G, are triangle-free
the same holds for G,+G,. In that case due to Theorem C2 (see the Appen-
dix) G, + G, could be one of the following nine graphs: K,, 3K, K,, 3K,,
K., K, ,, P,UK,, Mobius ladder on eight vertices and Petersen’s graph. By
direct checking we confirm ourselfs that in the above cases there are no
additional solutions. So let G; contain a triangle. Now, if we regard the ver-
tices of G,+G, as an ordered pairs then call V(k, x) (k=1, 2) the set of
all vertices of G,+ G, having x for the k-th component. If G; is incomplete,
take ¥ (j, x) and ¥V (j, y) in such a way that x and y are not adjacent in G;.
In this case it is easy to see, by using Lemma 4, that all vertices in ¥ (j, x)U
UV (j, y) regarded also as vertices of T (G) are v-vertices. Next, let u<V(/, y)
and take some e-vertex e (it must exist in T(G)) adjacent to both u and v.
By Lema 1 e is adjacent only to u and v among the vertices from ¥ (j, x)U
UV, y). But now in G,+G, we then have that eV (j, z) (z#x, ») is
adjacent to all vertices in ¥ (j, x) expect u. Of course, this is a contradiction
since |V (Jj, x)|=|V(G)|=3. Therefore we have that K,CG, implies G, is
complete, and accordingly, two cases are characteristic.

Case a: G; has more than two vertices. Now K,CG; and G; is also
complete. Then we have to find G such that T(G)=K,+ K, holds. Since

K,+K,—K, xK, we have T(G)=K,+K,. Due to Theorem B3 it follows
that G does not exist. '

Case b: G, has just two vertices, ie. G;=K,. Now G;#K, (see Case 2)
and since K,CG; all vertices in V (j, x) and V(j, ») (x#y) except perhaps
three ones from each of the above sets are v-vertices (if regarded as vertices
of T(G)). The last assertion follows directly from Lemma 4. By Lemma 1,
since G is not totally disconncted, p(G;)—3<2, i.e. p(G)<S5. Now it can be
easily shown that even in this case there are no solutions. [

Theorem B3. Graph equation T (G)=G,xG,, for G, G, being con-
nected and nontrivial, has no solutions.
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Proof. Observing the maximal vertex degrees of T (G) and G, xG,, by
using the relations A (T'(G))=2 A (G) and A (G, xG)=AG, AG,, we get

@) 2A(G)=A(G)A@G)).
Similarly, observing the number of vertices in the largest clique of the corres-

ponding graphs we have ¢(T(G)>=A (G)+1 and c¢(G, x G,)<min (c(G)),
¢(G))<min (A G,), A(G))+ 1. Therefore, it follows

(®) 2A(G)<AG) +A(G).
Combining (a) and (b) we get
(©) (AG)-1D AGY-D<L.

For A(G)=1 (i=1, 2), we have G;=K, (since G, connected) and now G, x G,
is bichromatic while T'(G) is never bichormatic. So, by using (c) we get
A(G)=A(G)=2. Since G, and G, are connected they can be only paths or
cycles and moreover because they cannot be bichromatic they are cycles of
odd lenght, ie. G,=C,,.,,, G,=C,,,,. Since Comi1 XChpi 1 =Copmi +C,
according to Theorem B1 there are no solutions. [

n+1

Theorem B4. Graph equation T (G)=G,xG,, for G,, G, being non-
trivial, has no solutions.

Proof. Since T'(G) is disconnected only for G=X, or K, , (see Theo-
rem C1) it immediately follows that G, or G, cannot be disconnected. As in
Theorem B2, if we regard the vertices of G, x G, as ordered pairs then call
Vik, x) (k=1, 2) the set of all vertices of G, x G, having x for the k-th
component. Now in G, x G, all vertices in ¥ (i, x) (i=1, 2) are mutually non-
adjacent. In G, x G, the corresponding vertices are all mutually adjacent.
Hence, G, x G, can be partitioned into p(G,) complete subgraphs with p(G))
(j#i, j=1, 2) vertices. If p(G)=>4 the vertices of the mentioned complete

subgraphs regarded also as vertices of T'(G) can be according to Lemma 5,
only of the following types:

(@) all vertices in one complete subgraph are v-vertices;

(b) all vertices in one complete subgraph except one which is a v-vertex
are e-vertices:

(¢) all vertices in one complete subgraph are e-vertices.

Assume that in G, x G, there are no complete subgraph of the type (a).
Then we immediately get a contradiction since in that case G would have
more edges than a complete graph with the same number of vertices.
Now suppose that more than one of such complete subgraphs exist and
observe just two having for their vertex sets ¥ (i, x) and V (i, y) (x#y). Next
let an e-vertex e be adjacent to two (adjacent) vertices from ¥ (i, x). By Lem-
ma 1 it cannot be adjacent to any vertex from ¥ (i, y). Hence, in G, x G,
there exists a vertex being adjacent to all vertices from V (i, x) but not
to all vertices from ¥V (i, y) (note p(G,)>>4). Therefore, it follows that
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only one complete subgraph of the type (a) may exist in G x (,. Denote it
by C! (V(i, x) is its vertex-set) and observe an e-vertex e adjacent to two
vertices, say u, v from C!. Of course, e belongs to some other complete
subgraph, say C? having V (i, y) as its vertex-set, and due to Lemma 1C?
is of the type (¢). Hence, in T(G) due to Theorem 0.2 there is a star as
a subgraph (not necessarly induced) havmg p(G;) edges so that all its
vertices are v-vertices and u or v is its “central“ vertex. Now since C!
contains p(G;) vertices at least one of the vertices of the mentioned star
does not belong to C'. Denote one one such vertex by w and take that
it belongs to some complete subgraph C* (let the vertices of C3 be V (i, z),
z#x, y). As follows from above, C? must be of the type (b). Now take a
vertex f from C? which is adjacent to w. Using Lemma 2 it follows that f
is adjacent to all e-vertices from C3. But now in G, x G, f is not adjacent to
all vertices in V (i, z) while e is adjacent to wGV(z z) and also we have
e, fEV (i, ). The last is possible only if G, or G, have isolated vertices
which contradicts the fact that G, and G, are connected. If p(G)<<3 (i=1, 2),
by direct checking, we get that there are no solutions. [

Theorem BS5. Graph equation T (G)=G,xG,, for G,, G, being connec-
ted and nontrivial, has no solutions.

Proof. The case when G is without edge is excluded by suppositions
of the theorem. Hence, T (G) contains a triangle and also G,*G,. Now
we shall prove that to each triangle of G, * G, there corresponds in the same
graph a vertex adjacent to all vertices of the observed triangle. For that pur-
pose denote by (u, v)), (u,, v;) (u,, v,) the vertices of some triangle in G, *G,
where u,, u,. uy(v,, v,, v;) are the vertices of G,(G,). Then one of the follo-
wing possibilities must hold:

(@) u,, u,, uy and v, v,, v, form triangles in G, and G,, respectively;

(b) uy, uy, uy (or v, v,, v;) form a triangle in G, (G,) and just two
vertices among v, v,, v, (Or u,, u,, u,) say v,, v,, (or u,, u,) represent the
same vertex of G, (G,) while the third one v, (or u,) is adjacent to them;

(©) u;, u,, uy (or v, v,, vy) form a triangle in G,(G,) and all v, v,, v,
(or u,, u,, u,) represent the same vertex in G, (G));

(d) two vertices among wu,, u,, u;, say u,, u, and also two vertices
among v, v,, v, say v,, v, represent the same vertices in G, and G, respec-
tively, while the third ones u; and v, are adjacent to u,, u, and v,, v,.

Now we shall find (v, v) adjacent to (u;, v;) (i=1, 2. 3).

Case a: It is sufficient to take u=u;, v=v, i#j, i, j&{l, 2, 3}

Case b: It is sufficient to take wu=u,(or v=v,) and v=v,=v, (or
u=u,=u,).

Case c: It is sufficient to take w=uw, (or v=v;) ic{l, 2, 3} and v (or u)
is an arbitrary vertex of G, (G,) adjacent to v, (or u,).

Case d: Now take u=u, and v=v,.

To prove the theorem observe a triangle in T (G) having one e-vertex and

two v-vertices. Such a triangle has not the above property since otherwise we
get contradictions to Lemmas 1 and 5. ¥
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Theorem B6. Graph equation T (G)=G,*G,, for G,, G, being non-
trivial, has the following solutions:

(G, G;, Gy)=(mnk,, K,, K), (2 kK, UIK,, K,, kK, UIK,), where i#j, i, j=1, 2.

Proof. It is easy to see that both G, and G, can be complete graphs
in which case G is totally disconnected. Hence, suppose first that only G, is
complete and also let it be different from K, while G; is incomplete. If the
vertices of G, * G, are regarded as as ordered pairs let, as earlier, Vk, x)
(k=1, 2) denote all vertices having x for the k-th component. Now in G, xG,
vertices V' (j, x) for all x are mutually nonadjacent and if uc V(j, x) then u
is adjacent or nonac}jaggg to all vertices belonging to V (j, y) for some y+#x.
So, each vertex in G,*G, is isolated or adjacent to three mutually nonadja-

cent vertices (since p (G,)>=3). If the vertices of G, * G, are now regarded also
as the vertices of T (G) by using Lemma 4 it follows that they are all v-vertices
and this is obviously a contradiction. Thus G, and G, are incomplete or one
of them is equal to X,.

For the beginning let both G, and G, be different from K,. If G, con-
tains a triangle then take V' (j, x) and ¥ (j, y) so that x and y are nonadja-
cent. In G, * G, each vertex from V (j, x) is adjacent to each vertex from
V (j, ») and since G; contains a triangle by using Lemma 4 it follows that
all vertices in ¥V (j, x)\UV (j, y) are v-vertices. Since G; is incomplete we can

take in G, * G, two adjacent vertices u, vV (j, x) and an e-vertex ecV(Jj, 2)
(z#x, y) which is adjacent to both u and v. By Lemma 1 ¢ is adjacent only
to u and v among vertices belonging to ¥ (j, x)UV (J, y). Now in G,*G, e
is adjacent to all except two vertices from ¥V (j, x) and also it is adjacent to
all vertices from ¥ (j, y). This is impossible by the definition of the opera-
tion * and thus G, and G, are both triangle-free. Assume now that K| IK,C
CG;. Since G; is not complete or totally disconnected (the last follows from
Theorem C 1) in G; there exists a vertex being adjacent and nonadjacent to
some other vertices of G;. Hence, it is possible to find in G, * G, three groups
of vertices, say V(j, x), V(j, ), V(J, 2) (x, y, z are mutually different),
so that x and y are nonadjacent and x and z are adjacent. Next, let U =
=, 1), vy=(v, t), w,=(w, t) (t=x, y, z) and according to the above we
can choose that u,, v, w, induce K,UK, in G, *G,. Now in G, *G, we have
the following induced subgraph, see Fig 2.

Ux Uz
% d v
\I\/x Wz

Fig 2.
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Now if we regard vertices u,, v,, w, (t=x, », z) as vertices of T (G) then by
Lemma 4 (see Fig. 2) v, and v, must be v-vertices and by Lemma 2 u,, w,,
u,, w, must be also v-vertices. Hence, all vertices in V (j, ) (see Lemma 1)
must be v-vertices and consequently all vertices in ¥ (j, x) must be v-vertices.
Choose an e-vertex e adjacent to u,, v,. By Lemma 1 it is nonadjacent to
all other vertices from V' (j, x) UV (j, ¥). Soin G, +G, e (eZV (j, x\)UV (J, »)
is adjacent to all vertices expect two from ¥V (j, x) and also it is adjacent to
all vertices from ¥ (j, y). The last is, of course, a contradiction and thus
K, UK, is not an induced subgraph in G, and G,, Now since K, UK, and K,
are both forbidden in G, and G, as 1nduced subgraphs and also since nelther
of G, and G, is totally dlsconnected (see Theorem C1) G, and G, must be
blcomplete graphs. But then it is a matter of routine, by usmg Lemmas 1 —6,
to verify that the corresponding graph G does not exist. Namely, if G,=K,,
and G,=K,,, from the above mentioned lemmas for max (m, n, k, l)>3 we
easily get contradictions; for the rest of possibilities by direct checking we
find that G does not exist.

At last it remains the case G,=K, and G, is incomplete. If K,{JK,CG,
then we have the same situation as earlier (see Fig. 2 and corresponding con-

clusions) i.e. now all vertices in G * GZ, if regarded as vertices of T (G), are
v-vertices, and this is obviously absurd. Hence, K,UK, is forbidden in G; as

an induced subgraph and so G,= Um; K. Now G,+G,= Um, (iK,) and since

this graph must also be a total graph all m; except m, and m, are equal
to 0. [ '

3. Appendix

Here we will prove two theorems which are used in the above text and
which also give some analogous results for complementary total graphs in com-
parison with the results obtained in [10], for complementary line graphs.

Theorem CL. If H=T(G) for some G, then H is disconnected if and
only if G=K, or K, ,.

Proof. In fact we have to solve a graph equation I'(G)=G,VG,.
Since G is not totally disconncted we have an e-vertex ecV(G,) (i=1 or 2).
But now, since e is adjacent to all vertices from V (G;) (j#i, j=1, 2), by
using Lemma 1, we get that V(G;) has at most two v-vertices.

Case a: G; contains just two (adjacent) v-vertices. Due to Lemma 5 all
vertices in G; except e (if any exists) are v-vertices. If G; contains only the
vertex e we get G=K,. Otherwise in G; there must exist at least two e-ver-
tices but due to Lemma 5 G can contain only one v-vertex. Thus, we get
G=XK,.

Case b: G; contains only one v-vertex, say u. Then G contains a v-ver-
tex v adjacent to e. If G; contains at least one e-vertex then, due to Lemma
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5, in G, exist at least two v-vertices and we get the same situation as above.
So let u be the only vertex in G;. Suppose now that in G, exists a v-vertex
w adjacent to v. This is due to Lemma 1 impossible, since otherwise an e-ver-
tex f would be adjacent to u, v and w. If all v-vertices from G, are mutually
nonadjacent we get G=K, .

Case c: G; has no v-vertices. Now it is easy to see that except G=K,
there are no other possibilities. [

Corollary. Graph equation T(G)=G,VG, has only the following
solutions:

G, G, G)=(K,, 2K, C), (K,,,,» K,, K,0K,), where i#j, i, j=1, 2.
Here o denotes the graph operation corona, see [1].

Theorem C2. A4 graph G without triangles is a complement of a total
graph if and only if it is equal to one of the following nine graphs: K, 3K,,
Ky, 3K,, K, ;, K,5, P,UK,, Mbbius ladder on eight vevtices and Petersen's
graph.

Proof. Observe that H,C H implies T (H)CT (H). Now it is easy to
see that 3K,CT(Hy) for each Hc{3K,. K,UK,, P,, K, ,+x, K,~x, K}
Thus all graphs from the above set are forbidden as induced subgraphs of H
if T(H) should be triangle-free. Now it is a matter of routine to find all
graphs H (just nine) having the above property. Since their complementary
total graphs are triangle-free, the theorem is proved. [
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