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The study of general and reproductive solutions of Boolean equations,
initiated by Lowenheim [4], [5], was continued and generalized by several
authors (cf. bibliography and the literature quoted in [9]). The first results
within a purely set-theoretical framework were obtained by Presi¢ [6], [8] and
BoZi¢ [1]. The latter author takes a fixed general (reproductive) solution
and shows that a function g is a general (reproductive) solution if and only
if it is of the form g= f o, where ¢ is a solution of the functional equation
f=fobf (f=f¢f) In this paper we prove that the general (reproductive)
solutions g are characterized by the simpler functional equations f =gh (f=gf),
which we solve.

*

Let the sets S, T fulfil @ #SCT; the elements of S are called solu-
tions. By a general solution is meant a mapping f:T—T such that f(T)=S§;
if, moreover, f|S=15 (i. e., if f(s)=s for every sEcS), then f is called a
reproductive solution.

Proposition 1. Let f be a general solution and g:T—>T. Then g is
a general solution if and only if g(T)CS and f=gh for some h:T—T.

Proof. Assume g is a general solution. Then g(T)CS is fulfilled as
an equality. For every t&T, we have f(1)&S=g(T); choose x&T such that
g(x)=f(t) and set h(t)=x. It follows that gh(t)=g (x)= f (¢) for every tcT.
Conversely, assume g(T)CS and gh= f. Then for every scS, taking t&T
such that s= f(¢), we get s=g (h(?)).

A second proof of Proposition 1 can be obtained via [1].

Proposition 2. Let f be a general solution and g a reproductive so-
lution. Then f =gf.

Proof. For every t&T, we have f(#)&S, hence g(f ()= f (o).
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Proposition 3. Let f be a reproductive solution and assume g:T —T
Sulfils g (TYCS and f=gf. Then g is a reproductive solution.

Proof. The function g is a general solution by Proposition 1. More-
over, for every s&S we have s= f(s), hence g@®=g(f ) =gf )= f(s)=s.

In view of Propositions 1—3, the determination of all general solutions
and of all reproductive solutions is now reduced to the solution of the func-
tional equations f=gh and f =gf, respectively. This is done in Propositions
4 and 5 below.

Proposition 4. Let f, h:T—T. Then:
() The equation f=gh is consistent if and only if

0)) vVx, X'CT) h()=h(x) > f(x)=f(x).

(i) When condition (1) is fulfilled, all the solutions g to f =gh are given
by the following formula:

@ g()= { S (x), if t=h(x);

arbitrary, otherwise.

Proof. Suppose the equation f =gh has a solution g. Then 4 ) =h()
implies f(x)=g (h(x))=g (h(x"))=f (x). Conversely, assume (1). Then formula
(2) defines unambiguously a mapping g for which g (x))=f(x) (Vx&T),
i.e., gh=f Conversely, gh= f implies that if ¢=~h(x), then g (¢)=gh ) = f(x),
i.e, g fulfils (2).

Corollary. Let f:T—T. Then all the solutions of the equation f=gf
are given by the following formula:

® B0=] e i
arbitrary, otherwise.

Proposition 5. Let f:T—>T. Then there is a bijection between all
functions h:T—>T satisfying (1) and all couples (6, Y), where F is a partition
of T, finer than {f~'(M},crm, and y:F6—T is an injection.

Recall that a partition 7 is said to be finer than a partition /2’ on the
same set if every /p-coset is included in a 2'-coset. Clearly 7 ={f~1 ("} e s
is a partition of T.

Proof. (i) Let # be a function fulfilling (1). Then obviously &=
={h"' (}yenm is a partition finer than 7, while y:FE~T defined by
x ("1 (»)=y (Yy&h(T)) is obviously an injection.

(i) Let %6 be a partition finer than ¥ and x:P6—T an injection.
For every x&T, set h(x)=y (H), where H is the Tt-coset that contains x;
then A:T T fulfils (1), because 4 (x)=h(x') means x(H)=y(H'), hence
H=H’ that is x and x’ belong to the same %G-coset, therefore they belong
to the same 7 -coset, say f~!(y), and this means f(x)=y= f (x').
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(iii) Under the hypotheses and notation from (i), the function 4’ const-
ructed from (¥6, y) as in (ii), coincides with A. For given x<&T, the FE-co-
set containing x is that coset A~!(y) for which h(x)=y, therefore A’ (x)=

=1 (1) =y=h(x).

(iv) Under the hypotheses and notation from (ii), we have to prove
that the couple (', x') constructed from A as in (i), coincides with (g, %)
So 6" ={h=1(»)}yen ) for the function A constructed at (ii), while y' (A=1 (»)) =y
(Vyeh(T)).

Let HCJ6 and set y (H)=y. Then x& H implies & (x)=y (H)=y&h(T)
and conversely, if x&h~1(y), then the Fb-coset H' of x fulfils y (H') =k (x)=
=y=7y (H), therefore H'=H, hence x&H. We have thus proved that H=
=h"t(NES'.

Let A=' (»)&F6'. Then y=h(T); take xEh~1(y) and let H be the $F-co-
set of x. For every x"€ H we have /i (x') =y (H)=h(x) =y, therefore x'ch~1(y).
Conversely, let x’ch~1(y) and let H' be the Y-coset of x’'; then y (H')=
=h(x)=y="h(x)=y(H), therefore H'=H, hence x’C H. We have thus pro-
ved that A-1(y)= HEY.

We have thus established that U6 ={A='())},cry=%6. Now let H=
=h"1())EF6. Then ¥’ (") (y))=y and on the other hand, taking x<H it
follows that y (H)=h(x)=y, that is ¥’ (H)=y (H).

We conclude with the remark that the properties of general and repro-
ductive solutions within the set-theoretical framework do not apply to gene-
ral and reproductive solutions of Boolean equations because the latter are re-
quired to be not merely mappings, but Boolean functions.
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