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(Received October 2, 1978)
Let the real sequence p=(p,) satisfy
(D p=1 p,20 n=2)"
and put P,= anv.

v=1

For every real sequence s=(s,) consider the linear operator T :s—>7(}),
where ©(3)=(t,(») is defined by

(2) Tn ()‘) sn+ z Dy Sy ()‘ rea])'

We have shown [1] that for A« —P,/p, (k=1, 2,...) the inverse operator
T5! is defined by?

7»
3 Sp=1, (M) — Pa, ()\) 2 Pyay_y Wy (M),
where
@ a M =1, 8,00 =a,( p)=ﬁ(1+x’;7“) (n>1).
v=1 v

If P,>oo(n—> o) and A> -1, Ty' satisfies Toeplitz s conditions, and so, by
the theorem of Toephtz, one can obtain the mercerian theorem for the welgh-

ted means P;" Z pysy, of the sequence s. Moreover, if p satisfies the sup-
v=1

plementary condition p,/P,—~0 (n—> ), the hypothesis A> —1 is even neces-

sary. This and related theorems have been proved in [1] and [2].

1) It is essential that p, is positive only.

2) Here, the notation is slightly changed, as compared to that used in [1]: one has
to substitute in [1] p, by p,,,and similarly to do with P,, s, and 7, (}), but not with a, (%.
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Two particular cases of the sequence a,(); p) are of special interest:

“’”) . which
n

have many interesting properties (see, for example, A. Zygmund [3], v. I, Ch.
HI, §1); () if py=1, p,=2""2(n=2), then a,Qu—2; p)=2p—Du*'. So it
may be of some interest to examine the properties of generalized Cesiro num-
bers a,(%; p) for various classes of sequences p.

() if p=(1), a,(x; p) reduces to the so called Cesiro numbers (

To avoid trivialities, we shall make two restrictions on p: (i) p,>0 for
infinitely many indices, for, otherwise, a,(}; p) takes the same value for all n
large enough; (ii) A~ —P./p, (k=1, 2,...), for, otherwise, a,()=0 for n>k.
Evidently, a,(0)=1 for each n.

From (4) it is immediate

n—1 0
) Poa, () =(1+3) 1’](1+(1+x)”;)—+1) (n>1;]‘[=1).
v=1 v v=1
From (4) and (5), respectively, it follows that
©) a0 =a, =24, 0) (=),
(7) Pa,() =P, M) =(1+Np,a, ,(}) @=1; P,=0)
and, by summation,
©") a,M=1+13 2a_ o,
v=1 Pv
(n=1)
() Poa,MN)=010+¥ 3 pyay_, (V).
v=1
Suppose that p satisfies (1) and et A=Hpn/Pn. We remark that
0<A<I and that, if A<0, lim (1+x"—")=1+m. Then:

1° a,()>0 for A> —1. (Follows from (5)). If ~1/A<x< -1, a,()) is
of constant sign for » large enough and if A< —1/A, a,(3) alters the sign
infinitely many times. (In the product (4), there are then finitely or infinitely
many negative factors respectively).

2° a,()) increases if A>0, decreases if —1<A<0 and, for » large
enough, increases (decreases) through negative (positive) values if — 1/A <A< — 1.
(This follows from (6) on account of 1°).

3° P,a,()) increases if A> —1 and, for n large enough, increases (de-
creases) through negative (positive) values if — 1/A <A< —1. (Follows from (7)
on account of 1°).

Suppose now that p satisfies, in addition to (1), the condition

) P,—oo (n-—>o00).
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Then:
4° a,(A)—> o (n— o) if A>0. (Since by 2°, a,N)=a,(M) =1 (n=1), (6)
implies
a,M=1+2 5 2,
v=1

and one has to apply the theorem of Abel-Dini:

o0 o0 pv )
Dy = o0 = — = 00 |,
2 Y v=1 Pv
5% a,(N) >0 (n—>o0) if — 1/A<x<0. (On account of 1° we may sup-
pose that a,(}) is positive and decreasing for n>=N.» So a,(A) converges

to a()=0. "Assume that a(})>0. Since a,(AN)=a(}) (n=N) and A<<0, from
(6') it follows that

a,(N<1+A z > Y gy (N +ra () z P (n=N),
v=1 v v=N 1y

and by the Abel-Dini theorem g, (A\) > — o (n—> o), what contradicts our assump-
tion. Hence, a (3)=0).

6° P,a,(A)—>o (n—>o) if A>-—1. (Since by 3°, P,a,(M)=P,a, (D)
(n=1), (7') implies

a,,(x>=(1+x)(pl+§ -
v=2

V-1

Py_ia,_, (x))

> +7\)(p1+P1 ™S —L)

v=2 fiy_q

>(1+%) (p1+P1al »S il),

V=2 v
and one has to apply the theorem of Abel-Dini).

7° P,a,()) >0 (n—>o) if —1/A<A—1. Suppose that P,a,()) is posi-
tive and decreases for n=N*% So P,a,()) converges to b()\)>0 Assume
that b(2)>0. Since P,a,(M)=b(A) (n>N) and 14+ x<0, from (7") it follows
that

2@, () = (14 2) z Pty N+ S 2P a4 )

v=N Fy_;

<A+)'S pa, W+aENbE) S L
v=1 v=N

N-1 n
SU+N'S oy W+A+NbM) ‘—"l,

v=1 v=N L'y

3) A symmetric reasoning applies if a, (2) is negative and increasing for n>N.
9 The same remark as in 3).
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and by the Abel-Dini theorem P,a, () —> — o (n—> ), what contradicts our
assumption. Hence, b (2)=0).

We remark that one could obtain the properties 4°—7° of the sequence
a,(\) by applying the general results about infinite products of the form
IH(+e¢,) (¢,20) and II(1—-¢,) (0<c,<1) on (4) and (5) (see e. g. K. Knopp
[4], Chapter VII, §28, Theorem 3 and Theorem 4, combined with Remarks
and Examples 2).

To obtain the asymptotic behaviour of a,()) (n—> ), we need some
prelimary results.

THeOREM | (Cesaro [5]). If the real sequence p satisfies (1), (8) and

p
9 L350 (n—>ow
® P, ( )
then
< pv ~
> —c=¢logP, (n—>w)
v=1 v

THEOREM 2. Suppose that p satisfies (1) and (8).
(i) Then the sequence
x, 2L S P _jog P,
v=2 L'y_4
is positive, increasing and converges to a number C(p) if and only if

2
(10) Py .
\2:2 Pv—1Pv

For p=(1) and p=(n), C(p) reduces to the Euler constant C and to 2C+log2
respectively.
(i) If (10) holds, then the sequence

o0

2
A > &—logl’n
P,

!
def
Xp 22
v=2 Pv_l Pv v=2

is positive, decreasing and converges to C(p).

PrOOF. Let
(11) o p2 n Pv p
df 3 2 x,= (lo ——")-
yn_.vgz PV—1P‘I " vgz gPy 1 Pv
Since
n P,
(12) X,= Z (—p—v—log————v——),
v=2 PV—-I V-1
one has
) n p2
(13) N R
v§2 PV—] Pv n yn
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If x=P,/P,_, for each n>2, the inequality

1
(14) l ——<Llogx<x~1 (x>0)
x
reduces to
Pn P, _ D
tlog — <.
Pn Pn—l Pn—l

Hence, on account of (12) and (11,), x, and y, are positive and increasing,
and, by (11,), x, is decreasing.

Integrating 1+ 1/¢2>2/t from 1 to x, one obtains

(15) log x<i(x——1-) .(x> 1).
2 x

Write (15) in the form

1
logx—14+—<x~1-logx (x=1)
x

and put x=P,/P,_,. This gives

P
log —2 -2 —log —*,
Pn—l Pn n—1 n—1
and, by summation, y,<x,.
Since, by 0<y,<x,, (13) implies

n p2

x, < Y <L2x,,

"\22 P,_ P, =T

part (i) of theorem 2 follows from (1), (10) and the monotony of x,.
If (10) holds, then by (11)) and (13),

o p2

4 v
PR P
"G Py Py

Hence, x, is positive, and by part (i), x, converges to C(p).

THEOREM 3. Suppose that the sequence p satisfies (1), (8), and (10). Then,
for At —Pulp, (k=1, 2,...) there exists I'(A+1; p) (independent of n) such
that

P,

_F_(m (n — o0).

a,(N) =

If p=(1), I'(»; p) reduces, by Euler’s definition, to the gamma function
I'(3). So, the asymptotic relation of theorem 3 may be interpreted as the
definition of a generalized gamma function.

2 Publications de 1'Institut Mathématigue
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Proor. Since log (1 +u)=u+ O (u?) for small |u|, one has by part (ii)
of Theorem 2,
loga,) =S log(l-i-)\I;T")

v=1

=13 2 A0s p+o ()

v=1 v

=ilog P,+4,(x p)+o(1).
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