GENERALIZED CESÀRO NUMBERS

S. Aljančić

(Received October 2, 1978)

Let the real sequence $p = (p_n)$ satisfy

(1)
$$p_1 = 1, p_n \geqslant 0 \ (n \geqslant 2)^{11}$$

and put $P_n = \sum_{\nu=1}^n p_{\nu}$.

For every real sequence $s = (s_n)$ consider the linear operator $T_{\lambda}: s \to \tau(\lambda)$, where $\tau(\lambda) = (\tau_n(\lambda))$ is defined by

(2)
$$\tau_n(\lambda) = s_n + \frac{\lambda}{P_n} \sum_{\nu=1}^n p_{\nu} s_{\nu} \qquad (\lambda \text{ real}).$$

We have shown [1] that for $\lambda \neq -P_k/p_k$ (k=1, 2, ...) the inverse operator T_{λ}^{-1} is defined by²⁾

(3)
$$s_n = \tau_n(\lambda) - \frac{\lambda}{P_n a_n(\lambda)} \sum_{\nu=1}^n p_{\nu} a_{\nu-1}(\lambda) \tau_{\nu}(\lambda),$$

where

(4)
$$a_0(\lambda) = 1, \ a_n(\lambda) = a_n(\lambda; \ p) = \prod_{\nu=1}^n \left(1 + \lambda \frac{p_{\nu}}{P_{\nu}}\right) \ (n \geqslant 1).$$

If $P_n \to \infty (n \to \infty)$ and $\lambda > -1$, T_λ^{-1} satisfies Toeplitz's conditions, and so, by the theorem of Toeplitz, one can obtain the mercerian theorem for the weighted means $P_n^{-1} \sum_{\nu=1}^n p_{\nu} s_{\nu}$ of the sequence s. Moreover, if p satisfies the supplementary condition $p_n/P_n \to 0$ $(n \to \infty)$, the hypothesis $\lambda > -1$ is even necessary. This and related theorems have been proved in [1] and [2].

¹⁾ It is essential that p_1 is positive only.

²⁾ Here, the notation is slightly changed, as compared to that used in [1]: one has to substitute in [1] p_n by p_{n+1} and similarly to do with P_n , s_n and $\tau_n(\lambda)$, but not with $a_n(\lambda)$.

Two particular cases of the sequence $a_n(\lambda; p)$ are of special interest:

(i) if p = (1), $a_n(\lambda; p)$ reduces to the so called Cesàro numbers $\binom{\lambda + n}{n}$, which

have many interesting properties (see, for example, A. Zygmund [3], v. I, Ch. III, §1); (ii) if $p_1 = 1$, $p_n = 2^{n-2}$ ($n \ge 2$), then $a_n (2 \mu - 2; p) = (2 \mu - 1) \mu^{n-1}$. So it may be of some interest to examine the properties of generalized Cesàro numbers $a_n(\lambda; p)$ for various classes of sequences p.

To avoid trivialities, we shall make two restrictions on p: (i) $p_n > 0$ for infinitely many indices, for, otherwise, $a_n(\lambda; p)$ takes the same value for all n large enough; (ii) $\lambda \neq -P_k/p_k$ $(k=1, 2, \ldots)$, for, otherwise, $a_n(\lambda) = 0$ for n > k. Evidently, $a_n(0) = 1$ for each n.

From (4) it is immediate

(5)
$$P_n a_n(\lambda) = (1+\lambda) \prod_{\nu=1}^{n-1} \left(1 + (1+\lambda) \frac{p_{\nu+1}}{P_{\nu}}\right) \left(n \geqslant 1; \prod_{\nu=1}^{0} = 1\right).$$

From (4) and (5), respectively, it follows that

(6)
$$a_n(\lambda) - a_{n-1}(\lambda) = \lambda \frac{p_n}{P_n} a_{n-1}(\lambda) \quad (n \ge 1),$$

(7)
$$P_n a_n(\lambda) - P_{n-1} a_{n-1}(\lambda) = (1+\lambda) p_n a_{n-1}(\lambda) \quad (n \ge 1; \ P_0 = 0)$$

and, by summation,

(6')
$$a_n(\lambda) = 1 + \lambda \sum_{\nu=1}^n \frac{p_{\nu}}{P_{\nu}} a_{\nu-1}(\lambda),$$
 $(n \ge 1)$

(7')
$$P_{n} a_{n}(\lambda) = (1 + \lambda) \sum_{\nu=1}^{n} p_{\nu} a_{\nu-1}(\lambda).$$

Suppose that p satisfies (1) and let $\Lambda = \overline{\lim}_{n \to \infty} p_n / P_n$. We remark that

$$0 \le \Lambda \le 1$$
 and that, if $\lambda < 0$, $\lim_{n \to \infty} \left(1 + \lambda \frac{p_n}{P_n} \right) = 1 + \lambda \Lambda$. Then:

 1° $a_n(\lambda) > 0$ for $\lambda > -1$. (Follows from (5)). If $-1/\Lambda < \lambda < -1$, $a_n(\lambda)$ is of constant sign for n large enough and if $\lambda < -1/\Lambda$, $a_n(\lambda)$ alters the sign infinitely many times. (In the product (4), there are then finitely or infinitely many negative factors respectively).

 2° $a_n(\lambda)$ increases if $\lambda > 0$, decreases if $-1 < \lambda < 0$ and, for *n* large enough, increases (decreases) through negative (positive) values if $-1/\Lambda < \lambda < -1$. (This follows from (6) on account of 1°).

 $3^{\circ} P_n a_n(\lambda)$ increases if $\lambda > -1$ and, for *n* large enough, increases (decreases) through negative (positive) values if $-1/\Lambda < \lambda < -1$. (Follows from (7) on account of 1°).

Suppose now that p satisfies, in addition to (1), the condition

$$(8) P_n \to \infty \quad (n \to \infty).$$

Then:

 $4^{\circ} \ a_n(\lambda) \to \infty \ (n \to \infty)$ if $\lambda > 0$. (Since by 2° , $a_n(\lambda) \geqslant a_0(\lambda) = 1 \ (n \geqslant 1)$, (6') implies

$$a_n(\lambda) \geqslant 1 + \lambda \sum_{\nu=1}^n \frac{p_{\nu}}{P_{\nu}},$$

and one has to apply the theorem of Abel-Dini:

$$\sum_{\nu=1}^{\infty} p_{\nu} = \infty \Rightarrow \sum_{\nu=1}^{\infty} \frac{p_{\nu}}{P_{\nu}} = \infty .$$

 $5^{\circ} \ a_n(\lambda) \to 0 \ (n \to \infty)$ if $-1/\Lambda < \lambda < 0$. (On account of 1° we may suppose that $a_n(\lambda)$ is positive and decreasing for $n \ge N.^{3}$) So $a_n(\lambda)$ converges to $a(\lambda) \ge 0$. Assume that $a(\lambda) > 0$. Since $a_n(\lambda) \ge a(\lambda) \ (n \ge N)$ and $\lambda < 0$, from (6') it follows that

$$a_n(\lambda) \leqslant 1 + \lambda \sum_{\nu=1}^{N-1} \frac{p_{\nu}}{P_{\nu}} a_{\nu-1}(\lambda) + \lambda a(\lambda) \sum_{\nu=N}^{n} \frac{p_{\nu}}{P_{\nu}} \quad (n \geqslant N),$$

and by the Abel-Dini theorem $a_n(\lambda) \to -\infty$ $(n \to \infty)$, what contradicts our assumption. Hence, $a(\lambda) = 0$.

6° $P_n a_n(\lambda) \to \infty$ $(n \to \infty)$ if $\lambda > -1$. (Since by 3°, $P_n a_n(\lambda) \geqslant P_1 a_1(\lambda)$ $(n \geqslant 1)$, (7') implies

$$\begin{split} P_{n} a_{n}(\lambda) &= (1+\lambda) \left(p_{1} + \sum_{\nu=2}^{n} \frac{p_{\nu}}{P_{\nu-1}} P_{\nu-1} a_{\nu-1}(\lambda) \right) \\ &\geqslant (1+\lambda) \left(p_{1} + P_{1} a_{1}(\lambda) \sum_{\nu=2}^{n} \frac{p_{\nu}}{P_{\nu-1}} \right) \\ &\geqslant (1+\lambda) \left(p_{1} + P_{1} a_{1}(\lambda) \sum_{\nu=2}^{n} \frac{p_{\nu}}{P_{\nu}} \right), \end{split}$$

and one has to apply the theorem of Abel-Dini).

 $7^{\circ} P_n a_n(\lambda) \rightarrow 0 \quad (n \rightarrow \infty) \quad \text{if} \quad -1/\Lambda < \lambda -1$. Suppose that $P_n a_n(\lambda)$ is positive and decreases for $n \geqslant N$. So $P_n a_n(\lambda)$ converges to $b(\lambda) \geqslant 0$. Assume that $b(\lambda) > 0$. Since $P_n a_n(\lambda) \geqslant b(\lambda) \quad (n \geqslant N)$ and $1 + \lambda < 0$, from (7') it follows that

$$\begin{split} P_{n} a_{n}(\lambda) &= (1+\lambda) \sum_{\nu=1}^{N-1} p_{\nu} a_{\nu-1}(\lambda) + (1+\lambda) \sum_{\nu=N}^{n} \frac{p_{\nu}}{P_{\nu-1}} P_{\nu-1} a_{\nu-1}(\lambda) \\ &\leq (1+\lambda) \sum_{\nu=1}^{N-1} p_{\nu} a_{\nu-1}(\lambda) + (1+\lambda) b(\lambda) \sum_{\nu=N}^{n} \frac{p_{\nu}}{P_{\nu-1}} \\ &\leq (1+\lambda) \sum_{\nu=1}^{N-1} p_{\nu} a_{\nu-1}(\lambda) + (1+\lambda) b(\lambda) \sum_{\nu=N}^{n} \frac{p_{\nu}}{P_{\nu}}, \end{split}$$

³⁾ A symmetric reasoning applies if $a_n(\lambda)$ is negative and increasing for $n \ge N$.

⁴⁾ The same remark as in 3).

and by the Abel-Dini theorem $P_n a_n(\lambda) \to -\infty$ $(n \to \infty)$, what contradicts our assumption. Hence, $b(\lambda) = 0$.

We remark that one could obtain the properties $4^{\circ}-7^{\circ}$ of the sequence $a_n(\lambda)$ by applying the general results about infinite products of the form $\Pi(1+c_n)$ $(c_n \ge 0)$ and $\Pi(1-c_n)$ $(0 \le c_n < 1)$ on (4) and (5) (see e. g. K. Knopp [4], Chapter VII, § 28, Theorem 3 and Theorem 4, combined with Remarks and Examples 2).

To obtain the asymptotic behaviour of $a_n(\lambda)$ $(n \to \infty)$, we need some prelimary results.

THEOREM 1 (Cesàro [5]). If the real sequence p satisfies (1), (8) and

$$\frac{p_n}{P_n} \to 0 \ (n \to \infty)$$

then

$$\sum_{\nu=1}^{n} \frac{p_{\nu}}{P_{\nu}} \cong \log P_{n} \quad (n \to \infty).$$

THEOREM 2. Suppose that p satisfies (1) and (8).

(i) Then the sequence

$$x_n \stackrel{\text{def}}{=} \sum_{\nu=2}^n \frac{p_{\nu}}{P_{\nu-1}} - \log P_n$$

is positive, increasing and converges to a number C(p) if and only if

$$(10) \qquad \qquad \sum_{\nu=2}^{\infty} \frac{p_{\nu}^2}{P_{\nu-1}P_{\nu}} < \infty.$$

For p = (1) and p = (n), C(p) reduces to the Euler constant C and to $2C + \log 2$ respectively.

(ii) If (10) holds, then the sequence

$$x_n' \stackrel{\text{def}}{=} \sum_{\nu=2}^{\infty} \frac{p_{\nu}^2}{P_{\nu-1} P_{\nu}} + \sum_{\nu=2}^{n} \frac{p_{\nu}}{P_{\nu}} - \log P_n$$

is positive, decreasing and converges to C(p).

PROOF. Let

(11)
$$y_n \stackrel{\text{def}}{=} \sum_{\nu=2}^{\infty} \frac{p_{\nu}^2}{P_{\nu-1} P_{\nu}} - x_n' = \sum_{\nu=2}^{n} \left(\log \frac{P_{\nu}}{P_{\nu-1}} - \frac{p_{\nu}}{P_{\nu}} \right).$$

Since

(12)
$$x_n = \sum_{\nu=2}^n \left(\frac{p_{\nu}}{P_{\nu-1}} - \log \frac{P_{\nu}}{P_{\nu-1}} \right),$$

one has

(13)
$$\sum_{\nu=2}^{n} \frac{p_{\nu}^{2}}{P_{\nu-1}P_{\nu}} = x_{n} + y_{n}.$$

If $x = P_n/P_{n-1}$ for each $n \ge 2$, the inequality

(14)
$$1 - \frac{1}{x} \le \log x \le x - 1 \quad (x > 0)$$

reduces to

$$\frac{p_n}{P_n} \leqslant \log \frac{P_n}{P_{n-1}} \leqslant \frac{p_n}{P_{n-1}}.$$

Hence, on account of (12) and (11₂), x_n and y_n are positive and increasing, and, by (11₁), x'_n is decreasing.

Integrating $1+1/t^2 \ge 2/t$ from 1 to x, one obtains

$$\log x \leqslant \frac{1}{2} \left(x - \frac{1}{x} \right) \quad (x \geqslant 1).$$

Write (15) in the form

$$\log x - 1 + \frac{1}{x} \le x - 1 - \log x \quad (x \ge 1)$$

and put $x = P_n/P_{n-1}$. This gives

$$\log \frac{P_n}{P_{n-1}} - \frac{p_n}{P_n} \leqslant \frac{p_n}{P_{n-1}} - \log \frac{P_n}{P_{n-1}},$$

and, by summation, $y_n \leqslant x_n$.

Since, by $0 \leqslant y_n \leqslant x_n$, (13) implies

$$x_n \leqslant \sum_{\nu=2}^n \frac{p_{\nu}^2}{P_{\nu-1} P_{\nu}} \leqslant 2 x_n,$$

part (i) of theorem 2 follows from (1), (10) and the monotony of x_n . If (10) holds, then by (11₁) and (13),

$$x'_{n} = x_{n} + \sum_{v=n+1}^{\infty} \frac{p_{v}^{2}}{P_{v-1}P_{v}}$$

Hence, x'_n is positive, and by part (i), x'_n converges to C(p).

THEOREM 3. Suppose that the sequence p satisfies (1), (8), and (10). Then, for $\lambda \neq -P_k/p_k$ $(k=1, 2, \ldots)$ there exists $\Gamma(\lambda+1; p)$ (independent of n) such that

$$a_n(\lambda) \cong \frac{P_n^{\lambda}}{\Gamma(\lambda+1; p)} \quad (n \to \infty).$$

If p = (1), $\Gamma(\lambda; p)$ reduces, by Euler's definition, to the gamma function $\Gamma(\lambda)$. So, the asymptotic relation of theorem 3 may be interpreted as the definition of a generalized gamma function.

PROOF. Since $\log(1+u) = u + O(u^2)$ for small |u|, one has by part (ii) of Theorem 2,

$$\log a_n(\lambda) = \sum_{\nu=1}^n \log\left(1 + \lambda \frac{p_{\nu}}{P_{\nu}}\right)$$

$$= \lambda \sum_{\nu=1}^n \frac{p_{\nu}}{P_{\nu}} + \sum_{\nu=1}^n O\left(\frac{p_{\nu}^2}{P_{\nu}^2}\right) \quad (n \to \infty)$$

$$= \lambda \sum_{\nu=1}^n \frac{p_{\nu}}{P_{\nu}} + A(\lambda; p) + o(1)$$

$$= \lambda \log P_n + A_1(\lambda; p) + o(1).$$

REFERENCES

- [1] S. Aljančić, Sur le théorème mercerien de Čakalov, Publ. Inst. Math. Belgrade 19 (33), 1975, 9-15.
- [2] S. Aljančić, An asymptotic mercerian theorem for weighted means of slowly varying functions, Bull. Acad. Serbe Sci. Arts, Sci. math. nat. 10 (1979).
 - [3] A. Zygmund, Trigonometric series, Cambidge Univ. Press, 1959.
- [4] K. Knopp, Theorie und Anwendung der unendlichen Reihen, 2. Aufl., Springer-Verlag, Berlin 1924.
 - [5] E. Cesàro, Nouv. Annales de Math. (3) 9 (1890), 353.

Proleterskih brigada 62 YU-11000 Belgrade