SUR UN TYPE DE LA RÉFLEXIVITÉ D'ESPACES LOCALEMENT CONVEXES

Stojan Radenović

(Communiqué le 20, Janvier 1978.)

Dans ce travail nous prenons en considération un type de la semi-réflexivité et réflexivité d'espaces localement convexes, celui est analogue à une classique semi-réflexivité et réflexivité, c'est-à-dire, à p-semi-réflexivité et p-réflexivité de [1] et [2]. A savoir, nous définissons β^* -semi-réflexifs et β^* -réflexifs (Définitions (2.1) et (3.1)) d'espaces localement convexes et nous examinons leurs propriétés. Cette classe d'espaces localement convexes se différencie à quelques propriétés de classes semi-réflexif et p-semi-réflexif. D'exemples (2.3) et (3.7) on voit que l'espace β^* -semi-réflexif, ainsi que, l'espace β^* -réflexif ne doit pas être semi-complet. Il existe l'espace normé, β^* -réflexif qui n'est pas de Banach (l'exemple (3.7)).

Dans le travail on suppose que E est un espace localement convexe sur le corps des nombres réels ou sur le corps das nombres complexes. Les notions et les termines sont comme en [2]. Ainsi, β et β^* sont les notions pour les familles des sous-ensembles faiblement et fortement bornées d'espace localement convexe E et de son dual topologique E', E'_{β} et E'_{β^*} , c'est-à-dire. E_{β} et E_{β^*} correspondantes topologies de convergence uniforme à E' et E.

Sous 1. on mentionne les propriétés fondamenal, des sous-ensemles fortement bornés d'espace localement convexe, que l'on utilise à 2. et 3.

1. Les sous-ensembles fortement bornés d'espace localement convexe

A tout l'espace localement convexe E se joignent, les fortes topologies à E et au dual topologique E' (E_{β} et E'_{β}). Les sous-ensembles bornés de ces espaces sont les sous-ensembles fortement bornés de E et de son dual topologique E'.

Les propositions qui suivent sont évidemment exactes.

(1.1) Proposition: Sous-ensemble A d'espace localement convex E est fortement borné si est seulement si il est absorbé par chaque tonneau.

- (1.2) Proposition: L'image continue de sous-ensemble fortement borné est sous-ensemble fortement borné.
- (1.3) Proposition: Pour tout espace localement convexe E, les espaces E'_{τ} (espace de Mackey) et E'_{β^*} ont les mêmes sous-ensembles bornés.

Preuve: Si A est un sous-ensemble borné d'espace E'_{τ} , alors A° est tonneau d'espace E, c'est-à-dire, en vertu de la proposition (1.1) absorbe les sous-ensembles fortement bornés de E, donc, A^{00} est sous-ensemble borné d'espace E'_{β^*} . Donc, A est sous-ensemble borné d'espace E'_{β^*} puisque $A \subseteq A^{00}$. Le contraire est évident.

De la proposition suivante on voit lorsqu'il est $\beta = \beta^*$ à l'espece E ou à dual E'.

- (1.4) Proposition: Pour tout espace localement convexe E les assertions suivantes sont équivalentes:
 - a) $\beta = \beta^*$ à l'espace E;
 - b) $E'_{\beta} = E'_{\beta^*}$;
 - c) $\beta = \beta^*$ au dual E';
 - d) $E_{\beta} = E_{\beta*}$;

Preuve: Il est évidemment que a) \Rightarrow b) et que c) \Rightarrow d). En vertu de la proposition (1.3) b) \Rightarrow c) et d) \Rightarrow a).

(1.5) Corollaire; L'espace infratonnelé E est tonnelé si et seulement s'il est $\beta = \beta^*$ à E ou bien $\beta = \beta^*$ à E'.

De la corollaire précédente on voit que dans l'espace infratonnelé qui n'est pas tonnelé, les familles de sous-ensembles faiblement et fortement bornées se différencient. Particulierèment dans l'espace normé qui n'est pas tonnelé, la boule unité n'est pas un sous-ensemble fortement borné.

2. β*-semi-réflexivité

(2.1) Définition: Un espace localement convexe E est dit β^* -semi-reflexif lorsqu'on a l'égalité algébrique $E = (E'_{\beta^*})'$.

Cette définition a un sens parce qu'au cas général la topologie d'espace E'_{β^*} n'est pas compatible avec la dualité $\langle E, E' \rangle$. Sachant que la topologie d'espace E'_{β} est plus fine de la topologie d'espace E'_{β^*} , alors inclusives suivantes sont évidentes: $E \subseteq (E'_{\beta^*})' \subseteq (E'_{\beta})' = E''$. Ainsi, l'espace semi-réflexif est β^* -semi-réflexif.

La proposition suivante et sa corollaire on peut les prouver de même façon comme pour les espaces semi-réflexifs à [2].

(2.2) Proposition: Pour tout espace localement convexe E on a l'égalité $(E'_{\beta^*})' = \bigcup_{B \in \beta^*} \overline{B}^{\sigma}((E'_{\beta^*})^*, E')$.

(2.3) Corollaire: Tout sous-ensemble fortement borné d'espace localement convexe E est relativement compact à l'espace $\sigma((E'_{\beta^*})', E')$.

Dans la proposition suivante est donné la caractérisation des espaces localement convexes β^* -semi-réflexifs comme à ([2], chap. IV, (5.5)) pour les espaces semi-réflexifs.

- (2.4) Proposition: Pour tout espace localement convexe E les assertions suivantes sont équivalentes:
 - a) E est β*-semi-réflexif;
 - b) E'_{τ} est infratonnelé;
 - c) La famille β* est faiblement quasi-complète;

Preuve: De a) il suit que la topologie d'espace E'_{τ} est plus fine de la topologie d'espace E'_{β^*} , c'est-à-dire, $E'_{\tau} = E'_{\beta^*}$, donc, l'espace E'_{τ} est infratonnelé. Il est évident que b) \Rightarrow a) et b) \Rightarrow c). En vertu de la proposition (2.2) il suit que a) \Rightarrow c). Il faut prouver que c) \Rightarrow b). Soit $\overline{A}^{E\sigma}$ sous-ensemble faiblement complet, où A est sous-ensemble fortement borné d'espace E. Il est évident que sous-ensemble A est faiblement précompact, alors, sous-ensemble $\overline{A}^{E\sigma}$ est faiblement compact, donc, $E'_{\tau} = E'_{\beta^*}$ et la preuve de la proposition est terminée.

- De ([2], chap. IV, (5.5)) on voit que l'espace E est semi-réflexif si est seulement si l'espace de Mackey E'_{τ} est tonnelé. En vertu de cela et du fait que la famille de sous-ensembles fortement bornés dépend seulement de dualité $\langle E, E' \rangle$, il est facile de trouver l'espace localement convexe β^* -semi-réflexif lequel n'est pas semi-réflexif.
- (2.5) Exemple: Si E est l'espace normé qui n'est pas tonnelé ([2], chap. II, exercice (14)) alors, l'espace E'_{τ} est β^* -semi-réflexif et n'est pas semi-réflexif. (L'espace $E = (E'_{\tau})'_{\tau}$ n' est pas tonnelé mais infratonnelé).

Ee vertu de la proposition précédente à c) il suit:

(2.6) Corollaire: Si l'espace E est β^* -semi-réflexif, alors la famille des disques complétants est fondamentale pour la famille de sous-ensembles fortement bornés. A tel espace E l'adhérence de disque camplétans est le disque complétant.

Dans la proposition suivante est donné le rapport entre les espaces β^* -semi-réflexifs et semi-réflexifs.

(2.7) Proposition: Un espace localement convexe E est semi-réflexif si et seulement si il est β^* -semi-réflexif et semi-complet.

Preuve: Un espace semi-réflexif est évidemment β^* -semi-réflexif et semi-complet puisqu'il est quasi-complet. Inversement, si l'espace E est semi-complet, on a que $\beta = \beta^*$ et alors, E est semi-réflexif si il est β^* -semi-réflexif.

Dans ([1], Définition (2.1)) on a étudié les espaces localement convexes qui sont p-semi-réflexifs. Le rapport de cette classe d'espaces localement convexes avec semi-réflexifs et β *-semi-reflexifs est suivant:

(2.8) Proposition: Un espace localement convexe E est semi-réflexif si et seulement si il est β^* -semi-réflexif et p-semi-réflexif.

Preuve: Tout espace E qui est p-semi-réflexif est en vertu de ([1], Corollaire (2.4)) semi-complet et alors la preuve suit en vertu de la proposition précédente.

Dans [1] est donné l'exemple de l'espace p-semi-réflexif qui n'est pas semi-réflexif. Cela signific que les classes d'espaces p-semi-réflexifs et β^* -semi-réflexifs sont incomparables en vertu de la proposition précédente.

Si l'espace E possède une suite fondamentale de sous-ensembles compacts, alors il est semi-réflexif. Pour les espaces qui ont la suite fondamentale de disques compacts, il suit:

(2.9) Proposition: Si l'espace localement convexe E possède une suite fondamentale de disques compacts, alors, E est β*-semi-réflexif.

Preuve: L'espace E'_c (le dual topologique muni de topologie de la convergence uniforme sur la famille de disques compacts) est évident métrisable et alors, $E'_c = E'_{\tau} = E'_{\beta^*}$. Cela signifie que l'espace E est β^* -semi-réflexif en vertu de la proposition (2.4), parce que l'espace E'_{τ} est infratonnelé.

3. β*-réflexivité

(3.1) Definition: Un espace localement convexe E est dit β^* -réflexif lorsqu'on a l'égalité topologique $E = (E'_{\beta^*})'_{\beta^*}$.

Si l'espace E n'est pas β^* -semi-réflexif et si $E'_{\beta^*} \neq E'_{\beta}$, alors, il est évident que la topologie d'espace $(E'_{\beta^*})'_{\beta^*}$ n'induit pas la topologie d'espace E_{β^*} sur E. Mais, en vertu de la proposition (1.3) il suit:

(3.2) Proposition: La topologie d'espace $(E'_{\beta^*})'_{\beta}$ induit sur E la forte topologie E_{β} .

Un espace localement convex E est réflexif (p-réflexif) si et seulement si il est semi-réflexif et tonnelé (p-semi-réflexif er p-infratonnelé). Pour les espaces β^* -réflexifs on a:

(3.3) Proposition: Un espace localement convex E est β^* -réflexif si et seulement si il est β^* -semi-réflexif et infratonnelé.

Preuve: Ee vertu des définitions (2.1) et (3.1) ainsi que par la caractérisation des espaces infratonnelés.

Il est claire que β^* -semi-réflexivité dépend seulement de la dualité $\langle E, E' \rangle$. C'est vrai aussi pour les espaces semi-réflexivité parce que toutes les topologies compatibles ont les mêmes sous-ensembles faiblement bornés ainsi que les mêmes sous-ensembles fortement bornés.

Dans la proposition suivante est donné le rapport entre les espaces β^* -semi-réflexifs et β^* -réflexifs utilisant la dualité $\langle E, E' \rangle$.

- (3.4) Proposition: Pour tout espace localement convexe E les assertions suivantes sont équivalentes:
 - a) E_{τ} est β^* -réflexif;
 - b) E'_{τ} est β^* -réflexif;
 - c) E_{σ} et E'_{σ} sont β^* -semi-réflexifs;
 - d) E_{τ} et E'_{τ} sont infratonnelés;

Preuve: a) \Leftrightarrow b) et a) \Leftrightarrow d) en vertu des propositions (2.4) et (3.3) et c) \Leftrightarrow d) en vertu de la proposition (2.5).

(3.5) Corollaire: Si l'espace localement convexe E est β^* -réflexif, alors, et l'espace E'_{β^*} est aussi β^* -réflexif. (Si l'espace E est réflexif (p-réflexif) alors l'espace E'_{β} (E'_p) est réflexif (p-réflexif)).

En vertu de la proposition (3.3) il est évident que les notions " β^* -semi-réflexif" et " β^* -réflexif" sont les mêmes pour les espaces normés. Si E est l'espace normé de dimension infini et \mathcal{M} la famille de l'enveloppes disquées de sous-ensembles finis, alors, il est évident que les notions " \mathcal{M} -semi-réflexif" et " \mathcal{M} -réflexif" ne sont pas les mêmes, puisque $(E'_{\mathcal{M}})' = (E'_{\sigma})' = E$, mais $(E'_{\mathcal{M}})'_{\mathcal{M}} = (E'_{\sigma})'_{\sigma} = E_{\sigma} \neq E$.

De la proposition suivante on voit les rapports entre les espaces réflexifs et β *-réflexifs:

- (3.6) Proposition: Pourt tout espace localement convexe E, les assertions suivantes sont équivalentes:
 - a) E est réflexif;
 - b) E est \(\beta^*\)-réflexif et semi-complet;
 - c) E est β*-réflexif et p-réflexif;

De l'exemple qui suit et de la proposition précédente on voit que les classe d'espaces p-réflexifs et β *-réflexifs sont incomparables.

(3.7) Exemple: Si E est l'espace de suites au plus fini coordinates qui ne sont pas zéro et si E muni d'une norme: $||x|| = \sup |x_n|$, alors, l'espace E est β^* -réflexif, mais il n'est pas réflexif, puisque il n'est pas de Banach. Tout disque compact d'espace E est dimension fini et alors la famille de disques compacts possède une suite fondamentale. En vertu de la proposition (2.9) l'espace E est β^* -semi-réflexif, c'est-à-dire, β^* -réflexif car il est infratonnelé.

BIBLIOGRAPHIE

- [1] J. Dazord et M. Jourlin, Sur quelques classes d'espaces localement convexes, Publ. du Dép. de Math, Lyon 1971, t. 8—2.
 - [2] Schaefer H., Topological Vector Spaces, The Mac Millan Comp., New York, 1966.