FACTORIZATION OF QUASIHYPONORMAL OPERATORS

S. M. Patel

(Received August 17. 1976)

Throughout our discussion, by an operator, we shall mean a bounded linear transformation on a complex Hilbert space H. If T is an operator, then we write R(T) and N(T) to denote the range and the null space of T. T is called quasinormal if $T(T^*T) = (T^*T)T$; hyponormal if $T^*T \geqslant TT^*$, and quasihyponormal if $T^*T \geqslant (T^*T)^2$ [4]. It is well known that {Quasinormal operators} \subseteq {Hyponormal operators}.

In [2], Embry has studied operators T for which $R(T) \subseteq R(T^*)$. Taking hint from this study, we introduce operators T for which $R(T^*T) \subseteq R(T^{*2})$. Let D_1 be the collection of all such operators. By Douglas' theorem [1], it is clear that D_1 includes all quasihyponormal operators and for T in this class, there exists a unique operator C such that

- (i) $T*T = T*^2 C$:
- (ii) $||C|| = \inf \{u : u \ge 0 \text{ and } (T^*T)^2 \le uT^{*2} T^2 \};$
- (iii) N(T) = N(C), and
- (vi) $R(C) \subseteq \overline{R(T^2)}$.

As done in [2], we shall characterize quasihyponormal, normal and self-adjoint operators in terms of C. In what follows, T will be an operator of class D_1 .

Our first result gives characterization for quasihyponormal operators.

Theorem 1. An operator T is quasihyponormal if and only if C is a contraction.

Proof. Suppose C is a contraction. Then $||T^*Tx|| = ||C^*T^2x|| \le ||T^2x||$ for all x in H and hence T is quasihyponormal.

Conversely assume that T is quasihyponormal. Since $||C^*T^2x|| = ||T^*Tx|| \le \le ||T^2x||$ for all x in H, $||C^*y|| \le ||y||$ for all y in $\overline{R(T^2)}$. Now, as noted earlier, $R(C) \subseteq \overline{R(T^2)}$ or $N(C^*) \supseteq \overline{R(T^2)}^{\perp}$, therefore $C^*x = 0$ for all x in $\overline{R(T^2)}^{\perp}$. In consequence, $||C^*x|| \le ||x||$ for all x in H, that is, C is a contraction.

To characterize normal operators, we shall use the following result.

Theorem 2. If T is a quasinormal operator, then C is a quasinormal partial isometry with $\overline{R(T^2)} = R(C)$.

Proof. First we show C to be a partial isometry. Since T is quasi-normal, $||C^*T^2x|| = ||T^*Tx|| = ||T^2x||$ for all x in H. This shows that C^* is an isometry on $\overline{R(T^2)}$. But $\overline{R(T^2)} \supseteq R(C) = N(C^*)^{\perp}$. Therefore C^* is a partial isometry and hence $\overline{R(T^2)} = R(C)$ and C is a partial isometry.

To prove that C is quasinormal, we note that in view of the quasinormality of T, $N(T) \subseteq N(T^*)$. Since $N(C) \subseteq N(T)$ and $N(T^*) \subseteq N(C^*)$, we have $N(C) \subseteq N(C^*)$ or $R(C^*) \supseteq R(C)$. But C^*C and CC^* are projections on $R(C^*)$ and R(C) respectively. Therefore C is hyponormal and hence quasinormal (see [3, Problem 161]).

Now we characterize normal operators in

Theorem 3. T is normal if and only if C is a normal partial isometry with $\overline{R(T)} = R(C)$.

Proof. Suppose T is normal. Then by Theorem 2, C^* is a partial isometry and $\overline{R(T^2)} = R(C)$. Since $\overline{R(T)} = \overline{R(T^2)}$, we have $\overline{R(T)} = R(C)$. This along with the relation N(T) = N(C) yields $R(C) = \overline{R(T)} = N(T^*)^{\perp} = N(T)^{\perp} = N(C)^{\perp} = R(C^*)$. Since C^*C is the projection on $R(C^*)$ while CC^* is the projection on R(C), we conclude that $C^*C = CC^*$.

On the other hand, if C is a normal partial isometry with $\overline{R(T)} = R(C)$, then $N(T) = N(C) = N(C^*) = R(C)^{\perp} = \overline{R(T)}^{\perp} = N(T^*)$. Therefore $||T^*x|| = ||Tx||$ for x in $\overline{R(T)}^{\perp}$. Also $||T^*Tx|| = ||C^*T^2x|| = ||T^2x||$ as C^* is a partial isometry on $\overline{R(T)}$. This shows that $||T^*x|| = ||Tx||$ for all x in H or T is normal.

Lastly we characterize selfadjoint operators in Theorem 4.

Theorem 4. T is selfadjoint iff C is the projection on $\overline{R(T)}$.

Proof. Suppose T is selfadjoint. Since $T^*T = T^{*2}C$, $T^2 = T^2C$, and hence T = TC. This shows that $C^* = I$ on $\overline{R(T)}$. Moreover as $N(C^*) \supseteq N(T^*)$, $C^* = 0$ on $\overline{R(T)}^{\perp}$. Therefore we conclude that C is the projection on $\overline{R(T)}$.

Now let us assume that C is the projection on $\overline{R(T)}$. Then $T^*T = T^{*2}C = CT^2 = T^2$; thus $T^*y = Ty$ for all y in $\overline{R(T)}$. To complete the proof, we show that $T^*x = Tx$ for all x in $\overline{R(T)}^{\perp}$. To this end, note that $N(T) = N(C) = N(C^*)$ and $R(C) \subseteq \overline{R(T^2)} \subseteq \overline{R(T)}$ will give $N(T^*) \subseteq N(T)$. Consequently $T^*x = Tx$ for all x in $\overline{R(T)}^{\perp}$.

REFERENCES

- [1] R. G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
- [2] M. R. Embry, Factorization of hyponormal operators, J. Austral. Math. Soc. 13 (1972), 323—326.
- [3] P. R. Halmos, A Hilbert Space Problem Book (Van Nostrand, Princeton, N. J. 1967).
- [4] I. H. Sheth, Quasihyponormal operators, Rev. Roumaine Math. Pures Appl. 19 (1974), 1049—1053.

Current Address:

FACULTY OF MATHEMATICS UNIVERSITY OF DELHI DELHI — 110007.

DEPARTMENT OF MATHEMATICS SARDAR PATEL UNIVERSITY VALLABH VIDYANAGAR 388 120, GUJARAT (INDIA)