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Throughout our discussion, by an operator, we shall mean a bounded
linear transformation on a complex Hilbert space H. If T is an operator, then
we write R(T) and N(T) to denote the range and the null space of T. T is
called quasinormal if T(T*T)=(T*T) T; hyponormal if T*T>TT*, and quasi-
hyponormal if T*2T2>(T*T)? [4]. It is well known that {Quacinormal ope-
rators} C {Hyponormal operators}C {Quasihyponormal operators}.

In [2], Embry has studied operators T for which R(T)C R(T*). Taking
hint from this study, we introduce operators T for which R(T*T)C R(T*?).
Let D, be the collection of all such operators. By Douglas’ theorem [1], it is
clear that D, includes all quasihyponormal operators and for T in this class,
there exists a unique operator C such that

() T*T=T*2C;

(i) || C|l=inf {#:u>0 and (T*T)><KuT*?T?};
(iiiy N (T)=N(C), and

(vi) R(OCR(T.

As done in [2], we shall characterize quasihyponormal, normal and self-
adjoint operators in terms of C. In what follows, T will be an operator of class D,.

Our first result gives characterization for quasihyponormal operators.

Theorem 1. An operator T is quasihyponormal if and only if C is a
contraction.

Proof. Suppose C is a contraction. Then || T*Tx ||=|| C*T?x ||<|| T?x ||
for all x in H and hence T is quasihyponormal.
Conversely assume that T is quasihyponormal. Since || C*T2x||=|| T*Tx ||<

<||T?x|] for all x in H, ||C*y||<|/y]|| for all y in R(T?. Now, as noted

earlier, R(C)CR(T? or N(C*)Ql?(ﬁl, therefore C*x =0 for allxinR(TZ)J'.
In consequence, || C*x||<|| x| for all x in H, that is, C is a contraction.
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To characterize normal operators, we shall use the following result.

Theorem 2. If T is a quasinormal operator, then C is a quasinormal
partial isometry with R(T?) = R(C).

Proof. First we show C to be a partial isometry. Since T is quasi-
normal, ||C*T2x||=|{T*Tx||=||T2x]|| for all x in H. This shows that C* is

an isometry on R(72%). But R(T?)DR(C)=N(C*™ . Therefore C* is a partial
isometry and hence R(T?)=R(C) and C is a partial isometry.

To prove that C is quasinormal, we note that in view of the quasinor-
mality of T, N(T)CN (T*). Since N(C)CN(T) and N (T*)CN (C*), we have
N(C)CN(C*) or R(C*)DR(C). But C*C and CC* are projections on R(C*)
and R(C) respectively. Therefore C is hyponormal and hence quasinormal (see
[3, Problem 161}).

Now we characterize normal operators in

:llgorem 3. T is normal if and only if C is a normal partial isometry
with R(T)=R(C).

Proof. Suppose T is normal. Then by Theorem 2, C* is a partial
isometry and R(T?=R(C). Since R(T) =R (T?), we have R(T)=R(C). This
along with the relation N(T)=N(C) yields R(C)=R(T)=N(TH' =N (T)* =
= N(C)* =R(C*). Since C*C is the projection on R(C*) while CC* is the
projection on R(C), we conclude that C*C=CC*.

On the other hand, if C is a normal partial isometry with R(T)= R (C),
then N(T)=N(C)= N(C*)=R(C)'L = R(T)‘L =N (T*). Therefore || T*x||=|| Tx||
for x in R(T)l. Also || T*Tx||=||C*T?x||=||T?x|| as C* is a partial isometry
on R(T). This shows that || T*x!|=| Tx|| for all x in H or T is normal.

Lastly we characterize selfadjoint operators in Theorem 4.

Theorem 4. T is selfadjoint iff C is the projection on R(T).

Proof. Suppose T is selfadjoint. Since T*T=T*2C, T?=T2C, and
hence T'=TC. This shows that C*=1 on W). Moreover as N (C*)DN(T*),
Cx=0 on IWIT)'L. Therefore we conclude that C is the projection on R(T).

Now let us assume that C is the projection on R(T). Then T*T=T*2C=
=CT?=T2 thus T*y=Ty for all y in R(T). To complete the proof, we show
that T*x=Tx for all x in R(T) . To this end, note that N (T)= N (C)= N (C*)
and R(C)CR(T)C R(T) will give N(T*)CN(T). Consequently T*x=Tx for
all x in K(T)l.
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