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Summary. It is shown that the only nonlinear second order differential equati-
ons with solutions of the form F(u, v), where u and v are independent solutions of a
linear second order equation, are those which can be obtained from Pinney’s equation
N +p(x)n+cn~?=0 by simple transformations. This provides a simpler and a better
description of those equations than the one given by Herbst and Gergen-Dressel.

1. Herbst [1] proved the following theorem.

Theorem 1. If u and v are variable independent solutions with Wronskian
w of the linear equation

0] Y'—w@) W XY +q(x)Y=0
where w and q are given functions, then the equation

2 V'i=wTtw Y =f(, ¥, w, q)

has general solution

3 y=F(u,v)

if and only if

O] =—gZ(N+AMNOP+w C(Q)
where Z, A, C satisfy

) ZC'+(3—-A4Z2)C=0, Z' —AZ=1.

The F in (3) is any solution of the system
F,=AF)F5+v2C(F), F,=A(F)F2+u>C(F),
F,=AF)F,F,—uwC(F), Fu=u-1(Z(F)_VFv)'

“The main disadvantage of this result is the difficulty in determining F”,
comments Ames [2, p.63].

The exact form of F was obtained by Gergen and Dressel [3]. They
proved the following theorem
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Theorem 2. Suppose that f(y,y',w,q&C' on a domain R=
={0, Y, w, @|m<y<M}, that E(y)=f(», 0,0, —1)#0, m<y<M, and that
Fu v yeC'’ and m<F<M on domain V. Suppose further that for arbitrary
constants w#0 and q, if u and v are solutions of (1) with Wronskian w such
that (u, vYEV for x on an interval I, then y=F (u, v) satisfies (2) on 1. Under
these conditions, if m<n<<M, then F can be written F=® (0'?), (u, v)&V,
where  (u, v) is a homogeneous polynomial of degree 2, positive in V, and ® s

y
the inverse of ¢ (y)=exp fI/E () dt, m<y<M.
n

The proof of theorem 2 given in [3] is based on the uniqueness proper-
ties of solutions of differential equations, and is rather long and involved.

The object of this note is to provide an elementary and straight-forward
proof of the Gergen-Dressel result. This proof also gives a deeper insight into
the nature of Herbst’s equation (2)—(4)—(5).

2. It is readily verified that if u and v are linearly independent solutions
of (1), then

(6) z=(au*+buy + (1/4 a) (4 ¢ + b2) v?)12,

where as£0 and b are arbitrary constants, is the general solution of the
equation

@) ' —wlw 2 gz=cw? 273 (¢ = const).

This result with b=0 can be found in Reid [4].
Putting

®) z=exp [ dy|Z (y),
equation (7) is transformed into Herbst’s equation (2) with (4) and (5). Hence,
the general solution of (2)—(4)—(5) is y=® (z), where z is given by (6) and ©
is the inverse of exp f dy[Z (p).

This is a straight-forward proof of theorem 2.

3. Pinney [5] noted that the equation
) ' +p(X)n+ey =0 (c=const)

has the solution y=(u?—v?)"2, where u and v are appropriately chosen soluti-
ons of the corresponding linear equation %'’ +p (x) n=0.

If we put y=w"!2z, then (9) transforms into (7), with [g=p+(3w'2—
—2ww')/4w?. Hence, Herbst’s equation (2)—(4)—(5) can be obtained from
Pinney’s equation (9) by the substitution

(10) n=w"2exp [ dy|Z ().

This leads to the surprising conclusion that Pinney’s equation (9), which
initiated the research of Herbst and Gergen and Dressel, and which was
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generalized to (2)—(4)—(5), is actually the canonical equation for the class
described by Herbst. In other words, the only second order equations with
general solution F (u, v), where u and v are independent solutions of a linear
second order equation, are those which can be obtained frcm Pinney’s equa-
tion (9) by a transformation of the form 7=f(x)g ().
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