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In this paper we shall be concerned with the equation P(L)x=0, where
P is a polynomial over C; x& ¥V, where V' is a commutative algebra over C
and L is a linear operator on V subjected to certain conditions.

1. The class H (V)

Definition 1. Suppose that L is a linear operator on V which satisfies
the condition

() L (uv)=uLv if and only if ucker L.

The class of such operators will be denoted by H (V).
Let P be an m-th degree polynomial over C and consider the equation

(2) P(L)x=0,
where L& H (V) and x& V is the unknown vector.

Theorem 1. Suppose that i, ..., A, are roots of P and that they are,
at the same time, characteristic values of L. If v,,..., v, are the correspon-
ding characteristic vectors, then

n

(3) N S vy,

k=1

where u,, ..., u,cker L are arbitrary, is a solution of the equation (2).

Proof. Since, by hypothesis, Lv,=2x,v, (k=1,..., n), and since
LeH V), from (3) follows
Lx= 73 w,Lvy= 3 M vy,
k=1 k=1
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and further

n
L x=3 W, (v=1,..., n).
k=1
Hence,
PLyx=73 P(N)uv.=0,
Py
since, by hypothesis, P (x,)=0 for k=1, ..., n.
Definition 2. Let x, ..., x,&V. If there exist vectors u,, ..., u,c
ker L, not all zero, such that
(4) Z uk ’\'/( = O,
’ k=1
we say that x,, ..., x, are linearly dependent with respect to the kernel of L,
or shortly (ker L)-linearly dependent.
On the other hand, if (4), where u,Cker L, implies U=+ =u,=0,
we say that x., ..., x, are linearly independent with respect to the kernel

of L, or (ker L)-linearly independent.

Theorem 2. Let x, y&V and let L& H (V). Those vectors are (ker L)-
-linearly dependent if and only if

I x y |
W(x, y)=! '=0.
| Lx Ly:
Proof. Suppose that x and y are (ker L)-linearly dependent. Then,
we have, for instance, y—ux, where uCker L. But then
W, ux)::x ux‘:{x uxi
I Lx L(ux)| |Lx ulx:

Conversely, suppose that
Yo
'Lx Ly
This implies that there exists ¥V such that y=uwx and Ly=ulx. From
those two equalities follows L (ux)=uLx, and hence, in viitue of (1), ucker L.

2. The class K(V)

Definition 3. Suppose that LCH (V) and suppose that the Sollowing
condition is satisfied:

If x, ..., x, are (ker L)-linearly independent and if
ZL“(llkxk‘):—Z ll,\,Lv.\'k(VZI,...,”fl)
k1 k=1

then u, ..., u,=ker L,

We then say that LK (V).
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Theorem 3. Let x,,..., x,&V and let L=K V). Those vectors are
(ker L)-linearly dependent if and only if

1

| X X, X

Lx, Lx, Lx
&) Wix, ooy X)=1 . =0.

n—1 n-1 . n--1
(L x L"tx, L"'x,

Proof. If x,,..., x, are (ker L)-linearly dependent, then, for instance,

n

X,= % U x, with wi-ker L.
k=1
kr

But then

L“xr=2ukL"xk (v:],...,n—]),

and clearly W=0.

Conversely, suppose that (5) holds. Then one column, the r-th column
say, can be expressed in terms of others, i.c.

(6) LYx,= 3 u L' x, (v=0,..., n—1).

k=1
k#r

This system implies

7 S LYy x))= 3 u LY x, (v=1,..., n—1)
k=1 k=1
kr k#r

We now distinguish between two possibilities:

(i) Vectors x,, ..., X, _,, X, ..., X, are (ker L)-linearly dependent.
The theorem is in that case proved.

(i) Vectors x,, ..., X,_,, X,,,, ..., X, are (ker L)-linearly independent.
Then since LEK(V), the system (7) implies that u, cker L, and from (6)
for v=0 we see that the theorem is again proved.

Denote by S the space of all solutions of the equation
(8) P(L)x=0

where L& H (V).
Clearly, if v S, then wv& S where uCker L,
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Theorem 4. If LCK(V), then dim S<dgP.

Proof. Let m=dg P and let X5 ..., X,,, be arbitrary (but distinct)
elements of S. Then

(9) P(L)x,=0 (k=1,..., m+1).

Eliminating the coefficients of P between the m + | equations (9) we get

X, X, < Xy
Lx, Lx, Lx,, .,
. =0,
L™ x, L™ x, L™ x, .,
which implies, in view of Theorem 3, that the vectors Xiyovr, Xy, are
(ker L)-linearly dependent, i.e. for some k we have
nt4-1
Xe= > Uy X,
v=1I
vk
with u,Cker L.
However, since x,&S, we have u,x,CS, mmplying that x, ..., x,._,
are linearly dependent vectors. Hence, dim S<m.
Theorem 5. If LEK (V) and if Vis ooy Y, are linearly independent

solutions of the equation (8), then its general solution is

mn

(10) o= U vy
k=1

where u,=ker L are arbitrary.

Proof. If § denotes, as before, the space of all solutions of the equa-

tion (8), then v,, ..., v, are m linearly independent elements of S. In view
of Theorem 4 dim S=m, and (s ..., vy is a basis of S. But then
(u;vl, e Uy v,.), where (0£) u:,eker L, is also a basis of S. Hence, if
x&.S, then
X=73 oy u,’cvk. (o, scalars).
k=1

Denoting «, iy by u, we arrive at (10).

Theorem 6. Suppose that Ay ... A, are distinct roots of P and that
they are, at the same time, characteristic values of LEKV). If v, ..., v, are
the corresponding characteristic vectors, then

n

Xo= > U vy,
k=1

where u, ..., u,cker L are arbitrary, is the general solution of the equation (8).
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Proof. If 2., ..., &, are distinct characteristic values, then the corres-
ponding characteristic vactors are linearly independent. Hence, this theorem
follows directly from Theorem 5.

On the basis of Theorem 6, we see that the equation P(L)x=0 can,
in certain cases, be replaced by two simpler equations Lx=0 and Lx=Ax (A
arbitrary scalar).

3. The class D (V)

Definition 4. Let L be a linear operator on V and let ocker L be
fixed. If for all u, v&V

L(uv)=uLv+vLu+ o LuLy
we say that L&D, (V).
Theorem 7. If L&ED, (V), then L&EH (V).
Proof Trival
Theorem 8. If a0, then L&Dy (V) if and only if a L&D, (V).

Proof. If «#0, the equalities
Lwv)=ulv+vLu+alulv and oL w)=uolv+velu+oalualLy

are clearly equivalent.

Remark. This theorem shows that D, and D, are the only interesting
subclasses of D,.

Theorem 9. If L&ED, (V) and w&V, where w is not a solution of the
equation w+ Lw=20, then wLEK (V).

Proof. Put A=wL. Then

(1 AWvy=udv +vAu+w-1 Au Av,
and ker A=ker L.
Suppose that x,, ..., x, are (ker L)-linearly independent and that
(12) > A (U x )= u, A x,, v=1,..., n—1).
k=1 k=1

For v=1 we find

(13) > Ay x)= 3 up Axy,
k=1 k=1
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while in virtue of (11) we have
n n n n
> Ay x)= 3 g Axi + 2 Y Au+ 3wl Auy Ax,.
k=1 k=1 kot =1

Hence,

> (e +w™l Axy) Au, =0,
k=1
or, equivalently,

n
> (xx+Lx,) Lu,=0.
k=1
Applying the operator 4 to (13) we find
n n n n
> A x) =3 u A2 X+ 2 Aup Ax,+ 3w Auy Ax,,
k=1 k=1 k=1 k=1

which, together with (12) for v=2 yields
n
> (Ax+w 142 x,) Au, =0,
k=1
or, equivalently,
Z (H’ka -+ L (WL.Xk)) Luk = O,
k=1
> (w+Lw) L (x,+ Lxy) Lu, =0.
k=1
Repeating this procedure, we arrive at the following system:

n
> XeLu=0
A=1

S LWL} X Lu,=0  (v=0, 1,..., n—-2),
k=1

where X, =x, + Lx, and W=w+ Lw (£0).

Put
Xl X2 e X"
X, LX, LX,

| |

|

D=’ L(WL)X L(WL) X, LWL)X, |.
. i

J |

|

LwLy-2 X, L(WLy—2X,  L(WLp—2X,)
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After a finite number of elementary transformations we arrive at the
equality

i Xl X2 e X" 1

- Lx, LX, LX, |
D=(I+Ly-hizly. ' B

?Ln—le Ln—l X2 Ln~1Xn“

where 7 is the identity operator.

However, (I+Ly'®=D2 W= (]+ LY"~D+Hi2y-£(0 On the other hand,

it is readily shown that if x, ..., x, are (ker L)-linearly independent, then
X,,..., X,, where X, =x,+Lx, are also (ker L)-linearly independent. There-
fore, according to Theorem 3, Ds£0. This means that Lu, = ...=Lu,=0,
ie wu,..., u,&ker L=ker A, and the theorem is proved.

Theorem 10. If LED, V), then L&K (V).

Proof. If «=0, the result is readily verified. If «#£0, and L&D, (V),
then « L&D, (V) and hence « LEK (V) (we let w of Theorem 9 be the unity of
V). However, from Definition 3 directly follows that L& K (V) if and only if
« LEK V) (a0).

4. Some particular cases

The above theorems unify some known results for equations which con-
tain differential and difference operators. In order to illustrate this point, we
consider some second order equatinos.

Let the polynomial P(t)=t*+pt+q(p, q=R) have two distinct real
roots A and p. The following equations

d*y dy
AT 4 =0,
(14) g TP T
(15) dy p+f() dy 4
dx? fx  dx feRt
az P u
(16) PR e 257+(fﬂ+gﬁ+pf>~+
F(feet g8, +78) Ot qu=0,
oy
an Yyx+2)+(p-yx+D)+1+g-p)y(x)=0,
(18) Ay () + —"ff—‘—‘——’l")—Ay(x)+————q’w«Ay()~

fx+1D S fx+1
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where Ay (x)=y(x+1)—y(x), are special cases of the equation
L2y +pLv+gv=0.

For each of the above equations we specify the operator, its kernel, and the
characteristic vectors v,, v, which correspond to the characteristic values A
and p.

Eq. (14):L=5—; ker L=R; vy =e**, y, =t~
x

d rdx wdx
Eq. (15):L=f(x) —; ker L=R; vx:exp\/‘—.——, vy=exp | ———
dx S T S

Eq. (16): L= f(x, y) ;—Jrg(x, ¥ ;;)—; ker L={F (o (x, y))| F is a differentiable
X Yy

function and w(x, y)=C is the general solution of yo=f(x, »/
g(x, y)}; v, is any solution of Svi+gv,=2v, v, is any solution of
Joe+gy, =y

Eq. (17):L=A; ker L=P=the set of all periodic functions with period 1;
va=(1+x)* v,=(1+x)

x—1 A x—1 N
Eq. (I8):L=f(x)A; ker L=P; v, = (l+ ), v, = (l+—-~).
O re) =1 [
Hence, applying Theorem 6 we see that the general solution of the
equation (14) is:

Mol

y=C, et +C, e+,
of equation (15) is:

y=C, expfmlderCz exp “dx;
S (x) S )

of equation (16) is:

LIZA()C, y)oc(x, y)+B(xa y)B(xs y)a
of equation (17) is:

Y=p, () (1 +2)*+p, (x) (1 + x)¥;

and of equation (18) is:

x—1 A x—1 N
ren@ ] [ +s) e 1 ),
011 Q) 1 o
where C,, C, are arbitrary constants, P, (x) and p,(x) are arbitrary periodic
functions with period 1, A(x, y) and B(x, y) are arbitrary solutions of the
equation fu,+gu,=0, «(x, y), B(x, y) are particular solutions of the equations
Su.+gu,=hu, Ju.+gu, = pu, respectively,

Remark. The above list of possible interpretations of L is by no
means complete. As an other important interpretation of L one could take
Kolosov’s operator D, defined for complex differentiable functions w(z) =
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1
u(x,y)+iv(x, y) by Dw= 5 (4y—vy+i(,+u,)), which leads to systems of (real)
partial differential equations.

5. Concluding remark

The object of this paper was to show how general solutions of appa-
rently different linear equations can be obtained by the same method. It seems
that we have also arrived at a new class of solvable equations. Namely,
the general solutions of equations (14), (15), (16) and (17) were already known,
but we have not found in literature the general solution of the equation (18).
Some special cases of that equation were treated. Recently Smentek (Zesz.
nauk. Ug. Matematyka 1971 (1972), No. 1, pp. 121—168) solved the equation
(18) with f(x)=x, and called it Euler’s difference equation.

We mention one more point in connection with the equation (18). It is
well known that the differential equation (15) is the most general equation
that can be reduced to an equation with constant coefficients. One might
consider the question whether the difference equation (18) (which is analogous
to (15)) is the most general difference equation that can be reduced to a
difference equation with constant coefficients.
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