ON COMMUTING FAMILIES OF SUBNORMAL OPERATORS

Pushpa Juneja

(Received July 2, 1976)

bstract. It is proved that if $A = (A_1, \ldots, A_n)$ is a commuting family of subnormal operars on a complex Hilbert space then $\sigma(A)$ is a joint spectral set for A.

Let H be a complex Hilbert space and let $A = (A_1, \ldots, A_n)$ be an tuple of commuting bounded operators on H. Let \mathcal{U} be the double communit of the set $\{A_1, \ldots, A_n\}$ i.e. the set of all operators on H which commute with every operator that commutes with each of A_1, \ldots, A_n . Then \mathcal{U} is commutative Banach algebra with identity containing the set $\{A_1, \ldots, A_n\}$. We shall need the following definitions in the sequel.

A point $\lambda = (\lambda_1, \ldots, \lambda_n)$ of \mathcal{C}^n (the *n*-dimensional complex space) is in the joint spectrum $\sigma(A)$ of A is for all B_1, \ldots, B_n in \mathcal{U}

$$\sum_{i=1}^{n} B_i (A_i - \lambda_i) \neq I$$

A complex vector $\lambda = (\lambda_1, \ldots, \lambda_n)$ of \mathcal{C}^n is in the joint point spectrum $\sigma_p(A)$ of A if there exists x in H such that

$$A_i x = \lambda_i x$$
, $1 \leqslant i \leqslant n$.

A point $\lambda = (\lambda_1, \ldots, \lambda_n)$ is in the joint approximate point spectrum $\sigma_{II}(A)$ of A if there exists a sequence $\{x_k\}$ of unit vectors in H such that

$$||(A_i - \lambda_i) x_k|| \to 0 \text{ as } k \to \infty, 1 \le i \le n.$$

AMS (MOS) subject classification (1970). Primary 47 A 25, 47 B 20, Secondary 46 M 05. Key words and phrases. Double commutant, commutative Banach algebra, joint spectrum, joint point spectrum, joint approximate point spectrum, joint numerical range, joint spectral sets, tensor products, subnormal operators, convex hull.

The joint numerical range W(A) of A is the set of all points $\lambda = (\lambda_1, \ldots, \lambda_n)$ of \mathcal{C}^n such that for some x in H with ||x|| = 1, $\lambda_i = \langle A_i x, x \rangle$ for each i. Thus

$$W(A) = \{ \langle Ax, x \rangle = (\langle A_1 x, x \rangle, \dots, \langle A_n x, x \rangle) : x \in H \text{ with } ||x|| = 1 \}.$$

A closed subset X of \mathcal{C}^n is a joint spectral set for A if

$$||u(A)|| \leq \sup_{\lambda \in X} |u(\lambda)| = ||u||_X,$$

for all rational functions u without singularities on X.

Let H_1, H_2, \ldots, H_n be complex Hilbert spaces, I_k the identity operator and A_k an arbitrary operator on H_k , $1 \le k \le n$. Consider the tensor product space $H_1 \otimes H_2 \otimes \cdots \otimes H_n$ and the operators T_k 's defined on it by

$$T_1 = A_1 \otimes I_2 \otimes \cdots \otimes I_n$$

$$T_2 = I_1 \otimes A_2 \otimes \cdot \cdot \cdot \otimes I_n$$

and, in general

$$T_k = I_1 \otimes I_2 \otimes \cdot \cdot \cdot \cdot \otimes I_{k-1} \otimes A_k \otimes I_{k+1} \otimes \cdot \cdot \cdot \cdot \otimes I_n$$

Obviously T_k 's are commuting operators. Dash [3] has shown that

$$W(T) = \prod W(T_i) = \prod W(A_i)$$

$$\sigma(T) = \Pi \sigma(T_i) = \Pi \sigma(A_i),$$

where $T = (T_1, \ldots, T_n)$.

In this paper, we are interested in taking $A = (A_1, \ldots, A_n)$ to be a commuting family of subnormal operators A_i 's on H. It is not known if there exists a commuting family $B = (B_1, \ldots, B_n)$ where B_i is the minimal normal extension of A_i on a Hilbert space K containing H as a subspace, $1 \le i \le n$. However, if the family A is doubly commutative, then there exists a commuting family B in which each B_i is a normal extension of A_i , and this is the extent of our knowledge in this direction [1].

Dash [5] has proved that if $A = (A_1, \ldots, A_n)$ is a commuting family of normal operators on a complex Hilbert space H then $\sigma(A)$ is a joint spectral set for A. We shall extend this result for a commuting family $A = (A_1, \ldots, A_n)$ of subnormal operators A_i for which there exists a commuting family $B = (B_1, \ldots, B_n)$ where B_i is the minimal normal extension of A_i .

We observe that $\sigma_p(A) \subset \sigma_p(B)$. One may conjecture that $\sigma(A) \subset \sigma(B)$. That this is false is shown by the following example:

If U is the unilateral shift and B is the bilateral shift and if we take $A_1 = \bigcup \otimes I$, $A_2 = I \otimes \bigcup$, $B_1 = B \otimes I$ and $B_2 = I \otimes B$, then $\sigma(A) = \overline{\Delta}^2$, the cartesian product of 2 closed unit discs and $\sigma(B) = \Gamma^2$, the cartesian product of 2 copies of the unit circle [2]. However, we can prove the following:

Theorem 1. If $A = (A_1, \ldots, A_n)$ is a commuting family of subnormal operators on H and $B = (B_1, \ldots, B_n)$ is a commuting family of their minimal normal extensions on a Hilbert space $K \supset H$, then $\sigma(B) \subset \sigma(A)$.

Proof. It is sufficient to prove that $(0, \ldots, 0) \notin \sigma(A)$ then $(0, \ldots, 0) \notin \phi(B)$. For simplicity, we shall prove the theorem for n=2. However, our method can be used to prove the general case also. Let $(0, 0) \notin \sigma(A)$, where

 $A = (A_1, A_2)$. Then $\sum_{i=1}^{2} T_i A_i$ is invertible for some T_i 's in the double commu-

tant of (A_1, A_2) . Thus $\sum_{i=1}^{2} \left(\frac{T_i}{\|T_1\| + \|T_2\|} A_i \right)$ is invertible. We normalize this

operator so that
$$\left\| \left(\sum_{i=1}^{2} \frac{T_{i}}{\|T_{1}\| + \|T_{2}\|} A_{i} \right)^{-1} \right\| = 1$$
. Let $T'_{i} = \frac{T_{i}}{\|T_{1}\| + \|T_{2}\|}$ so

that $||T_i'|| \leq 1$. For $0 < \varepsilon < 1$, let

$$E = \bigcap_{i=1}^{2} \left\{ f \in K : ||B_{i}^{m} f|| \leq \frac{\varepsilon^{m}}{2^{m}} ||f||, m = 1, 2, 3, \ldots \right\}.$$

By Theorem 1 [8, p. 66], E is a reducing subspace for B_1 and B_2 . Let $f \in E$ and $g \in H$, then

$$\begin{aligned} |\langle f, g \rangle \rangle &= \left| \left\langle f, \left(\sum_{i=1}^{2} T_{i}' A_{i} \right)^{m} \left(\sum_{i=1}^{2} T_{i}' A_{i} \right)^{-m} g \right\rangle \right| \\ &= \left| \left\langle f, \left(\sum_{i=1}^{2} A_{i} T_{i}' \right)^{m} \left(\sum_{i=1}^{2} T_{i}' A_{i} \right)^{-m} g \right\rangle \right| \\ &= \left| \left\langle f, \left(A_{1}^{m} T_{1}^{'m} + {}^{m} C_{1} A_{1}^{m-1} A_{2} T_{1}^{'m-1} T_{2}' + \dots + A_{2}^{m} T_{2}^{'m} \right) \left(\sum_{i=1}^{2} T_{i}' A_{i} \right)^{-m} g \right\rangle \right| \\ &= \left| \left\langle f, \left(B_{1}^{m} T_{i}^{'m} + m C_{1} B_{1}^{m-1} B_{2} T_{1}^{'m-1} T_{2}' + \dots + B_{2}^{m} T_{2}^{'m} \right) \left(\sum_{i=1}^{2} T_{i}' A_{i} \right)^{-m} g \right\rangle \right| \\ &\leq \left| \left| B_{1}^{*m} f \right| \left\| g \right\| + {}^{m} C_{1} \left\| B_{1}^{*m-1} B_{2}^{*} f \right\| \left\| g \right\| + {}^{m} C_{2} \left\| B_{1}^{*m-2} B_{2}^{*2} f \right\| \left\| g \right\| + \\ &+ \dots + \left\| B_{2}^{*m} f \right\| \left\| g \right\| \end{aligned}$$

$$= \|B_{1}^{m} f\| \|g\| + {}^{m}C_{1}\|B_{1}^{m-1} B_{2} f\| \|g\| + \cdots + {}^{m}C_{m}\|B_{2}^{m} f\| \|g\|$$

$$\leq \frac{\varepsilon^{m}}{2^{m}} \|f\| \|g\| + {}^{m}C_{1}\frac{\varepsilon^{m-1}}{2^{m-1}} \|B_{2} f\| \|g\| + {}^{m}C_{2}\frac{\varepsilon^{m-2}}{2^{m-2}} \|B_{2}^{2} f\| \|g\| + \cdots + {}^{m}C_{m}\frac{\varepsilon^{m}}{2^{m}} \|f\| \|g\|$$

$$\leq \frac{\varepsilon^{m}}{2^{m}} \|f\| \|g\| + {}^{m}C_{1}\frac{\varepsilon^{m-1}}{2^{m-1}} \frac{\varepsilon}{2} \|f\| \|g\| + {}^{m}C_{2}\frac{\varepsilon^{m-2}}{2^{m-2}} \frac{\varepsilon^{2}}{2^{2}}.$$

$$\|f\| \|g\| + \cdots + {}^{m}C_{m}\frac{\varepsilon^{m}}{2^{m}} \|f\| \|g\|$$

$$= \frac{\varepsilon^{m}}{2^{m}} \|f\| \|g\| + \frac{\varepsilon^{m}}{2^{m}} [{}^{m}C_{1} + {}^{m}C_{2} + \cdots + {}^{m}C_{m}] \|f\| \|g\|$$

$$= \frac{\varepsilon^{m}}{2^{m}} \|f\| \|g\| + \frac{\varepsilon^{m}}{2^{m}} (2^{m} - 1) \|f\| \|g\|$$

$$= \varepsilon^{m} \|f\| \|g\|, \quad \text{for all } m.$$

Thus $\langle f, g \rangle = 0$ and hence $H \subset E^{\perp}$. Since E is a reducing subspace for B_i and B_2 , $E^{\perp} = K$ and so $E = \{0\}$. It follows that each B_i is invertible. Hence $0 = (0, 0) \notin \Pi \ \sigma(B_i) \supseteq \sigma(B)$.

Corollary 1. If f is a rational function without singularities on $\sigma(A)$, then ||f(A)|| = ||f(B)||.

Proof. By Theorem 1, f is a rational function without singularities on $\sigma(B)$. Thus f(B) is defined. Since $\sigma(B) \subset \sigma(A)$, it follows that $f(\sigma(B)) \subset \sigma(f(A))$ i.e. $\sigma(f(B)) \subset \sigma(f(A))$. Now f(B) is normal, and hence

$$||f(B)|| = r(f(B)) \leqslant r(f(A)) \leqslant ||f(A)||,$$

where r(T) denotes the spectral radius of the operator T. As $||f(A)|| \le ||f(B)||$, our result follows.

Corollary 2. The joint spectrum $\sigma(A)$ is a joint spectral set for a commuting family $A = (A_1, \ldots, A_n)$ of subnormal operators on H.

Proof. This follows from the fact that any closed super set of a joint spectral set is a joint spectral set and the Corollary 1.

Dash [5] has proved that if $A = (A_1, \ldots, A_n)$ is a commuting family of normal operators on H then $\overline{W(A)}$ is the closed convex hull of the joint spectrum $\sigma(A)$. We shall prove that if we take A_1, \ldots, A_n to be subnormal operators on H_i 's and define T_k 's as before, then $\overline{W(T)}$ is the closed convex hull of $\sigma(T)$.

Let B_1, \ldots, B_n be the minimal normal extensions of A_1, \ldots, A_n on Hilbert spaces K_1, K_2, \ldots, K_n respectively such that each H_i is a subspace of K_i . If we define

$$S_{k} = I_{1}^{'} \otimes I_{2}^{'} \otimes \cdots \otimes I_{k-1}^{'} \otimes B_{k} \otimes I_{k+1}^{'} \otimes \cdots \otimes I_{n}^{'}$$

on the tensor product space $K_1 \otimes K_2 \otimes \cdots \otimes K_n$, where I_i' is the identity operator on K_i , $1 \leq i \leq n$, then it can be easily seen that S_1 , S_2 , ..., S_n are the minimal normal extensions of T_1, \ldots, T_n .

Theorem 2. If A_1, \ldots, A_n are subnormal operators on H_1, \ldots, H_n with the minimal normal extensions B_1, \ldots, B_n on Hilbert spaces K_1, \ldots, K_n respectively, then $\overline{W(T)} = closed$ conv $\sigma(T)$, where conv denotes the convex hull.

Proof. Using Theorem 1.

$$\sigma(S_i, \ldots, S_n) \subset \sigma(T_1, \ldots, T_n)$$

Also

$$W(T) = \prod W(T_i) = \prod W(A_i) \subset \prod W(B_i) = W(S_1, \ldots, S_n)$$

Therefore,

$$\overline{W(S_1, \ldots, S_n)} = \text{closed conv } \sigma(S_1, \ldots, S_n)$$

$$\subset \text{closed conv } \sigma(T_1, \ldots, T_n)$$

$$\subset \overline{W(T_1, \ldots, T_n)}$$

$$\subset \overline{W(S_1, \ldots, S_n)}.$$

Corollary 3. The closure of the joint numerical range of an n-tuple of commuting subnormal operators on the tensor product space is the same as the closure of the joint numerical range of their minimal normal extensions.

Acknowledgement. The author wishes to thank her supervisor Dr. B. S. Yadav for his kind help and guidance.

REFERENCES

- [1] T. Ando, Matrices of normal extensions of subnormal operators, Acta Sci. Math., XXIV (1963), 91-96.
 - [2] A. T. Dash, Joint spectra, Studia Math., XLV (1973), 225-237.
- [3] A. T. Dash, Tensor products and joint numerical range, Proc. Amer. Math. Soc., 40 (1973), 521-526.
- [4] A. T. Dash and M. Schechter, Tensor products and joint spectra, Israel J. Math., 8 (1970), 191-193.
- [5] A. T. Dash, Joint spectral sets, Rev. Roumaine de Math. Pures et Appl., 6 (1971.), 458-463.
- [6] J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1969.
- [7] P. R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N. J. 1967.
- [8] P. R. Halmos, Introduction to Hilbert space and the theory of sectral multiplicity, 1951, Chelsea, New York.

Faculty of Mathematics University of Delhi, Delhi—110007.