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1.0. Introduction

Nonlinear differential equations (n.d.e.) usually have particular solutions
(see, ex. [1—6]).

The theory of linear d.e. is rather advanced. It has been developing con-
tinuously, starting from classical works up to contemporary researches under
the influence of analysis, geometry, physics and other sciences. The theory
achieved great superposition success mostly because of the superposition prin-
ciple, about which the following theorem speaks:

If gi=1,...,n) is a solution of a certain homogenous 1l.d.e., then

B

g:C;, where C; — are some arbitrary constants, is also a solution of this d.e.
i=1

This is incorrect in the case of n.d.e.. So naturally, there is a tendency
to attempt to tranform n.d.e. to the linear and conversely [..., 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 21, 22].

In the present work almost all of the problems concerning the connec-
tions between the theory of linear and n.d.e. of any order are included, and
some of the answer to the question of J. M. Thomas (see [91]) about the d.e.
of n order is given. The central place in this work is the consideration of d.e.
of nth order of a general form.

1.1. Differential Equations of n-th order. Let g(x) be the general solu-
tion of the l.d.e.

(1.1 S a®ed=h(®, €S-,
r=0

where the coefficients a,(x)(r=0,1,...,n), h(x) are functions, in general
complex and continuous in some domain.
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The g® (x) are the derivatives of r th order (r=1, ..., n) and naturally,
a,(x)#0. As far as we deal with n.d.e., we try to place minumum condi-
tions of smoothness on the coefficient g, (x). Usually, they are proposed to be
infinitely differentiable.

Consider the n.d.e.

(1.2) D(x, y, y, ..., yM=0,
that has the solution
(1.3) y=r(gx)

where f is some function of x, which is to be found.

Suppose that f(g) has continuous derivatives up to the nth order where
n is a natural number,

Let us indicate

n d(g(x
(1.4) g =L
dx"
5 ro-[10]
dy" Jies, e=im.
Then we have from (1.3) to the derivative of nth order
(1.6) Y= 5 F,,(g®, ... go) £O,
r=1

or in the form
(1.6") YO = fA) g i F,.(g", ..., gn-0)fo

r=2

where ) are given in (1.5) and F, ,(g) are the derivatives of the function g
The formula (1.6) can be written as

n n
(1.7) Z F"'r g(l), R g(")) t7= z Fn,r(tg(l)’ vy tg("))’
r=1 =
and
! (1) y\s (2) \s )
(1'8) Fn,r(tg(l)x""tg(n))__'z - (tg )1.(tg )2'.'(tg'l m’
s tos,t\ 1! 21 nl
where

(1.9) {

and S, are nonnegative integers.
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Putting (1.1) as

(L1) 88~ ((h W=t (g =S a,(x)g(x,)
( ) r=1

into (1.6"), and using (1.8):
n—1 n

(110) any(n)=f(l) (h_aog)_f(l)' Z arg(')'*'anz Fn,r g(l)’ LR ] g("—l))f(’)'
r=1 r=2

According to (1.6"), we obtain;

Y =S F (g™, ..., g0 fA

, =2
(111) g()= f(l) ’

where if r</, F, ;(g", ..., g ")=0.
So we have from (1.11) and (1.10)

(L12) S a,y0+fO (@ g—h)—

r=1{

i F, (gM, ..., gr-0)f0 -0,

HM:

where 2<I<r.

Making the substitution Df® = fr+1), D=p—a—,

oy
9
(r+1) - .
reen=(e55)e)
5
ox
‘) r
(1.13) f<'“’=(——) PG, =0, ..., n=1).
ox
From (1.13), when r=0, we have
dy
(1.14) g=f—.
§ 467
And from (1.14) we have:
n—1fr—1¢1 r=1! pm
(1.15) g1 _ [ (__) _ﬁ__(m_) .
rgl qgl p qzsl!...s,__l! 1!
23k=q,
{2ksk=r—1,
P("l) L (n..l)' y(l) t y("-l) in—y
((r—l)!) ]zt,!...t,,_lz(u) ((n—l)!)
Etk=r,
{Ektkzn,
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where
_ 1
(1.16) (_1_) =Lﬂ’
plg  pr!
Putting (1.13), (1.14), (1.15) into (1.12) and denoting

1
b, () =p () f —_a,
p(y)
b, ()= -2
p(y
2980 -p (1S
1.17 b, (y) =220 — PP
(1) \3 1 2
b4 (y)= -6 (p(.V) ) + 6 P§;'))2P§;»)) _ pf:_?) ,
r(» P» ()
1 \4 1) 2 2)2 1 2 4(y)
P P P P p»

we can write (1.12) as

(1L18) 5 @Y7+ 4,3 G (00, ..., Ye=0)b, () +a, (x) b, () h () =0,
r=2 1=2

r=1

where G, , are derivatives of the function of y, for & (x)s40.

(1.19) by= —p,
and functions b,(»), i=1, ..., n satisfy she following expression
(1.20) by +b,b,=1, b=bi_y+b,_,b,, i=3,4,...,n.

So we come to the result:

Theorem 1.1. D.e. (1.18), where ihe Sunctions b, () (i=1, ..., n), are
related by the condition (1.17), or (1.20), have the solution y= (g (x)), where g
is the general solution of (1.1), and f is defined from

(1.21) S =p(f)=0.

The study of equations of Cauchy leads to (1.18), so using this method,
we can obtain the solutions which satisfy the initial conditions. Concretely, if
we have at first g, g8, ..., g§"™", for (1.1), then from (1.14) and its deri-
vative, we can define the first y,, yf)”, e YD of equation (1.18). The con-
verse is also true.

For some questions of the system of Cauchy, such as its unity, it is
natural to use the modified theory of n.d.e.. Here we do not consider these
problems.
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Note. Now it is easy to check that because of (1.18), when
n=1,2,3,4,5 and any q,, b,, h we generate the equations, that have been
studied during the past 25 years and earlier (see for example, the d.e. like the
ones in [6, 9, 20, 21, 22])

Several examples will now be considered. Here a, b, C; (i=0, 1,...) are
some constants.

Example 1.1. If n=1 then (1.18) becomes (as in [9])

(1.22) a; (x) y' +a,(x) b, () =b, (») h (x) =0,
where
(1.23) b, () =b fi—d b(ﬁ);;
: 1(y = o(y) bo(y) Y5 0 bo
Suppose in (1.22) a, =1, b, (y)=y", n# — 1. Then from (1.23): b, ()= 11 ¥,
—n

and (1.22) has the Bernoulli type: y'+ 1 ! a, (x) y+h(x) y™=0.

—n
Taking into consideration that different forms of q,, b,, r=0, 1, 2), A(x) and
n=1 in (1.18), (1.20) and so on in (1.1) we can have any d.e. of the first
order. Then in case of some special choice of «,, b,, & it is possible to have
known equations. For example, see [19, pp. 294—362].

Example 1.2. Using (1.18), (1.20) when n=2, =0, a,=1, b, (y) =,
y
equation (1.18) looks like Painlevé’s [20],

a, (x) y*

(1.24) ' +a (x)yy' +ay®+
1+a

=0, a=constz# — 1.

So in some special cases of a,, b,, h, n=2 in (1.18), (1.20), and (1.1),
(1.18) are connected with (1.20) leading to known equations (see [l8, pp.
485-—524)).

Example 1.3. With n=3 equation (1.18) becomes

(1.25) a,y"+a,y"+a,y' +a,G, ,b,+a,(G,,,b,+ G, 3 b,) +a,b, + b, h=0.
If, for example, a,=1, h=0, then (1.25) becomes [21, eq. (6)]
(1.26) Y 4a,y"+a, y'+b,yM3+a,b, yD2+3b, Yy +a,b,=0.

But for some a,(x), b,(y) (r=0, 1, 2, 3), A(x) in (1.18), (1.20), we can choose
coefficients so that (1.18) would be a special case of the example in [19, see pp.
525—529].

Example 1.4. a) For n=4 in (1.18) we have [22, eq. (2.18)]:
(1.27) a,y"+a;y"+a,y" +a, y'+a,G,,,b,+0,(Gy,, b, + Gy, by) +
+8,(Gy,,0,+ Gy, 3 b5+ Gy, b)) + a0 by + by h=0,
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that is

(1.28) 0,y +ay "+ a, Y+ a4, Y+ a, b, yO2 4 ay (36, YT YU+ b, y3) 4
+a,(4b,y' Yy +3b, y D24 66,y y"+b, yO% +ayb, +byh=0.

When b,=a/by, b0, a,=0 (i=0, 1, 2, 3), a,=1, h=0 in (1.28)

(1.29) By Y+ (2ab* -3 a2 b+ a®) Y4+ 6 ab (a— b) yy2 yil 4.

+ ab? yZ (3 y(2\2 + 4ylyIII) = 0’

. . . a+b \bl@+d .
with the solution according to (1.2, f (g)=(—b—g) . Recalling that

the solution of (1.1), in this case V=0, g=C, x*+C,x2+Cyx+C,, we have
a general solution:

y=(C, x*+ C,x*+C, x +C)bla+»
When a=5 from (1.29);
(1.30) W3 y®2 44yl
with the solution y=(2 (C+ gni2,

b) Let a,=1, ayax, a,=6a2, a,=4a*x3, ay=a*x*, h=0, b,= —tgy. Then
the general solution of (1.1) is

1
-3 ax2+trs x

where r; is some root of r*—6ar2+3a2=0 (if it is complex, we musi use tri-
gonometric functions). We have

ylV+ axy"l+ 6 a2 yII+ 4 a3 x3 yl+ (tg y) y(l)4 — (axy(1)3 + 6 y(l)z yll) _

—tgy-(6a2y(”2+3y(2)2+4y’y’”)+a4x4<tgy+ k )=0’
cosy

which has the solution y = arc sin (Cg+C). In case a=0, b,=1/y, we have (1.30).

¢ Let a,=1, ay=a,=a,=a,=0, h(x)=cos? x, then the solution of (1.1)
is g=x*/48 4 x2/8 + (cos 2 x)/32 which satisfies the initial conditions g0)=1/32,
g'(0)=0, g"(©0)=1/8, g (0)=0. In this case (1.28), for p(y)=1/y, becomes

nyV+ 3 y(2)2 -+ 4 yly”I— COS 2 X = O.

The solution y=(2(g+C))'2, and C=0, satisfies the initial conditions
y=4, y'=0, y"=1/32. y_.

And here for different a,, b,, h we can have different types of examples
[19, pp.525—529].
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Example 1.5. With n=5, a,=1, a,= -1, a,=a,=a,=0, h=0, then
one solution of 1l.de. (1.1) is gy=e*+cosx—2 which satisfies the initial
conditions g(0)=0, g'(0)=1, g (0)=0, g (0)=1, g’ (0)=2. Equation (1.18),
for ex. for p(y)=e~> becomes

yV_yl+y(1)5+ 10 y(1)3y"+ 10 y(1)2y111+ 15 yly(2)2+
F10 Yy L § Y yIv =0,

with the solution y=In(g,+C), for C=1. Using (1.6), (1.13) satisfies y=0,
=1, yT= 1, yM =3, yW= —8 as the initial conditions.
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