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Abstract. There are known formulas which give a connection between
the induced and intrinsic curvature tensors of the subspace and curvature
tensors of the surrounding space [1]. Here these relations are given involving

v
only the scalar quantity N

v v . o
N=N,(Big+T;i BK) 1*/®

and the induced and intrinsic connection coefficients, not the curvature tensors
of the surrounding space.

The subspace F, (u, u) of the Finsler space F,(x, %) is given by the equations:

x=x'(u!, u, ... u" i=1,2, ... mn, rank(g)=m
ou

Let us denote by B!, the tangent vectors and by N’ the normal vectors of
v

the subspace F,,, where

() BL:?— 0B SeLx=12 ...m,

M) () g;(x @), B.u*) N B, =0, Aty ¥, 6,0, T, p=m+1, ...n,
v

©) g, (x(u), B,a*) N'Ni=3,,, Ljk,,mn=1,2, ... n.
v



68 Irena Comié

The components of DB, and DN' with respect to the induced connection

v

coefficients are given by:
DBL=(T"% & + A% DI1?) B5+ (8% d + AL D I°) iv
DNi— (=05 duP — £, DI°) Bs+ (X" Jod + 4,5 DI°) N
"
and with respect to the intrinsic connection coefficients are given by:
DBL=[(T" % + M%) P + 2y D ] By + (0" P + Al DY VY
Dl‘:ﬁ (=02 pdf 4+ A DIP) Bi+ (W s + 4% D IP) .
Given a vector field & (x, %) defined on the subspace F, i.e. for Which

E.»i (x’ x) = gi (x (u)’ Ba ua)’
then we may write

i’

Ei=£i’+£l

i’

g =By £, g’ = N'En

Above, the line elements are omitted, but it should be understood to be the
line element (x (), By ).

Let us consider the line elements P, Py, P2, Ps3, P; where
P=(u, %), P,=@+du, u+di), P,=@u+3du u+3u)
P,=(u-+du+du+3du, u-+ditdu+3di)
Pi=(u+Su+du+dSu, u+3u+di+ddn)

If we move £ (u, w) parallel along PP,P3P; and also along PP, P; we get
at P; the difference vector denoted by DEi, where

i/l

)=DE +DE".

it

) DE-D(E +&

D&’ and D& can be expressed in terms of the induced and intrinsic curvature
tensors of the subspace. In terms of the induced curvature tensors these expres-
sions have the form:
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i 1 — — —
D Ef = {(—2— R:By—e.au [BB'EM Y])[dua, 3 uY] -+
(I_):BY - 6‘:6 AU-EY 4+ Aau'y —6.5‘,‘ B [duB, Z IY] +

1_5 4 n A o pi
(‘Z‘SaBY—A:[BA!uIY]) [DIB, AIY]]E B +
A3)
1= ey =
{(; Rbay +0. [wrﬂ) [af, 5u"l+

(Pauﬂ‘{ +6*avﬁzv‘;—A276'sl}é) [duB, EIY]+
1< , - N
(750‘:&” + Ay [BAlvl[LY]) [D P, Am}i N,

®

I.I,

1 = Sy ey
D =[(—?R wgy+ 0 v[ﬁliu!ﬂ) [duﬁ’ Su'l+

(?auﬂy +6'avﬂ A—:-Y+6* suﬂAﬁaY) [duﬁ: KIY]'F
1 :a o v T~ ry
(—78 et A p Aty ) [D1, Al*]}a‘*B;+
C))
1 ey v ] % v
[(?Ruﬂv'*‘e su- v9 ISIB]) [d”as qu]‘*‘

(Prlay+ A0, 055 —0" %o 457) [, A1)+

. v\ R ;
(7 suaY—AimAiw) [D#, Al*]] £ N

All the quantities appearing in the above equations are defined in [2].*

D& and DE” in terms of the intrinsic curvature temsors have the form:

*) In [2] the definition of the tensor j:Ja‘uB
equation of (2.34) takes the form:

v should be changed so that the second

Poupy=Paupy
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i’ 1 I3 | BN e 8§ * e
DE =[(”’ Rigy+—Kapy +Agiplisiy —
2 2
£ .3 .y g 8
~Aselan — 0" 50 lum) [&F, 8u"]+

(P:BY"‘ A:ﬂi'f“*‘ A:m Axv_e;(‘; Aiy+A579'ia)[du°, AIY]+

1 € L € i po
(?S BY—Aa‘mAmm)[Dla, AIY]]BaE +

®
1 L] ‘V *
{(? Ra‘EY+A§ (e 6,8'|‘Y] +0, [BA,U'-Y]) [dua, SuY]+
(Ploy+ 005 A%, — A2 0% + A 4d) [, AT +
(%SgaYJrAavalv*ﬂ) [DF, AIY]} N'E
"
it 1 o« * o *o *yv
DE" = [(—75 woy +0 wpAfyy +90 v[v7\|u|m) [, 8u]+
(= Poupy+ Ay Ap+ 67 4540700 4,3) [, AT']
1 « a i
(——_S U-BY+A5‘ [BAIVIY]) [DIB’ AIY]} auBa'l‘
© 2

1 v * *y
{(?Ruﬁv—e e 9|sm) [a®, 8u]+
(Ploy+ A%, 055 —0" 50 45%) [a® AI"]+
Loy 4, oA DI, AT E* N
2 By U-[BA|8|Y] , Al Ev

All the quantities appearing in the former equations are defined in
[3] (x*) except K5py, where

1 > & € * € * % %®
(7) ?K¢9Y=() v A]a!g] “‘)x A, 8 FY 1+ A.m (¢} A[ule] .

(**) The definition of the tensor PauBY should be changed so that the second equation
of (3.15) takes the form

anBy Puu-BY'
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Corollary 1. The relation between Ry and Risy in terms of the

tensors PLgy, Susys Kepy and the intrinsic and induced connection coefficients
of the subspace is given by:

1 1 — ~ v
= RiaY=7Rim—PiasA”wN+

1 -, 3 A @ 1 -
—SasxA v NA oy N ——Kq
(8) 2 8 () 2189 5 By

— AP Tigy+ Aste Tt +025 A% s 4N —
—0"% A% A N.
Proof Using the relation
YL B 4B At Y
DI°P=DI° - A", Ndu

and equating the coefficients of [P, Su"] BLE* in (3) and (5) we get:

1 1 Ly * * * *
2 R:BY+7K:BY+ AT — AsTe T — 02 ‘160 Suim =
1= m* o — ¢ —% € a* v
) ?R;{sy“ea T80 ru|y] +(Pa58_0 a8 A us+ Aqs su.B) (_AEYN)'*'

1 — e c v % ©
(75018%_141“614 u.u) (_A-Sv ] N) (_A |@]¥] N)
If we use the formula

(10) 0" =0 — A A% N

the last term in 9 becomes:

A A o N (= A A0 N) =
1) 3 B8 ( | i )

= A5 A% N (O Swim — étslul 1)

If we substitute (11) into (9), after some calculations applying (10) again we
obtain (8).
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Corollary 2. The relation between P,py and P, s, in the terms of
the tensor S,°, and intrinsic connection coefficients is given by:

Play—Plsyt St A%a N—
(12) By By ¥ [
A:S Y _Aocex Aﬂuy-

Proof. Equating the coefficients of [4f, A I"] BLE* in (3) and (5
we get:
Poloy+ Ao | v+ A Agy— 0" A+ A8 075, =
3 Popy—00" Ayt 450 %0+
(8= A ot AL Au) (45 N)

Using (10) again the last two terms in the above equation become
v v
— Ay Ay Ap N+ Ay g N Ay =

= Am‘fv (0' Eu B— 6' Eu B) -+ (6’;"‘3 - e‘a‘?ﬂ) Asuv
Substituting the above expression into (13), we obtain (12).
The relation
14 Sapy=Sasy

is obtained form (3) and (5) in the similar way.

Corollary 3. The relation between R%p, and Rig, in terms of the
tensors Plgs, Sisx and the induced and intrinsic connection coefficients is
given by:

1 © 1 - © D 5 1 < ® 3 ® Y Ay
? Rapy=?RagY—PaaaA vy N+7S¢5u AV[BA Jeo| ¥] NN —

(15) . T g
Ag Oy — Ao Al NNty —

B A0 N A2 Al S
ay v B +Aa8AxBAvYN

Proof. Equating the coefficients of [duﬁb‘u*] £*N' in (3) and (5) we
obtain; "
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1 8 . . .
> Ripy+ Ao +0. Ay =

1 - ey %
> Ripy+0: Ay +

(16)
(Plos+0uh AL — Ass Abs) (— AN N)+
1 — v = v x o
(3 Stst A 2] (- AL W) (~ A} W)
Multiplying the right-hang sides of (10) and (17), where
(17) 7\*\;‘# =5\*vu-y - ZvuSAsow ]‘C.

and substituting into (16), we get (15).

Corollary 4. The relation between P%s, and Plgy in terms of the
tensor Sisy and the induced and intrinsic connection coefficients is given by:

(18) Paug37=ﬁaugy— EausyAsvgN— Aasa Aauy-i—
+Aa8'y Asux Axwﬂ N+ Aa:"{ l:fvus AS&)B N.

Proof. Equating the coefficients of [&f, AI"]E*N' in (3) and (5),
*

using (10) and 4%, =AY, we obtain (18).

It is obvious that
(19) Skay=Shav-
Since

RauBY=RauBY, PauBY=PauBY, S“LLBY:Sau.BY

RauBY:RauﬂY’ POHJ-BY=£°‘MQ’Y’ Srzu.BY = Pxupys

by equating coefficients of [ du®, $u"]&" BL, [’ AI"]E* BL, and [DI°, AI']E" B,
in (4) and (6), we will get (15), (18) and (19).

Corollary 5. The relation between R}gy and Rjsy in terms of the
tensors P,as, Snsx and the induced and intrinsic connection coefficients is
given by

1 1 —_ — ® 1 _ c [5)
A R;ﬁY:?RJBY— uﬁsAsva"‘?SuVSx Az[B NA?‘”W] N
(20)
n*s v % - ® 8 Oarty
+6 U.YASKA (,)BN‘—A u&AmpNeuy.
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Proof. Equating coefficients of [a’34"]£* N' in (4) and (6), and using
(10), we get (20).

Corollary 6. The relation between the tensors P}, and Pjgy is
given by:

21 P;ﬁY:ﬁ;ﬂY'*'E:Y%A’:aN
Proof. Equating coefficients of [duB, AI]€*N' in (4) and (6), and
using (10), we obtain (21). It is obvious that

S:.BY= S;-BY'
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